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Abstract— We address the problem of estimating the latent
high-resolution (HR) image of a 3D scene from a set of non-
uniformly motion blurred low-resolution (LR) images captured
in the burst mode using a hand-held camera. Existing blind
super-resolution (SR) techniques that account for motion blur are
restricted to fronto-parallel planar scenes. We initially develop an
SR motion blur model to explain the image formation process
in 3D scenes. We then use this model to solve for the three
unknowns—the camera trajectories, the depth map of the scene,
and the latent HR image. We first compute the global HR camera
motion corresponding to each LR observation from patches
lying on a reference depth layer in the input images. Using
the estimated trajectories, we compute the latent HR image
and the underlying depth map iteratively using an alternating
minimization framework. Experiments on synthetic and real data
reveal that our proposed method outperforms the state-of-the-art
techniques by a significant margin.

Index Terms— Non-uniform blur, super-resolution, depth map.

I. INTRODUCTION

SUPER-RESOLUTION (SR) algorithms employ signal
processing techniques to recover a high-resolution (HR)

image from a set of low-resolution (LR) images. Their study
is of high contemporary relevance since they offer a cheap
and attractive means to retrieve high quality images from low-
resolution observations without the use of additional hardware.
The basic principle of multi-image SR is that downsam-
pled (aliased) subpixel shifted LR images provide new infor-
mation that can be utilized to reconstruct the HR image [1].

Traditional SR algorithms [2], [3] assume that the camera
is stationary during the exposure time itself, and that the
shift or motion is only between one LR image to the next
i.e., the only blurriness in the captured images is due to
downsampling, and the blurring process is known a priori.
However, camera shake is a common occurrence in hand-
held imaging devices such as cell phones which have now
become ubiquitous. Motion of the camera during the exposure
duration manifests as motion blur in the acquired image.
In such situations, super-resolution makes little sense without
compensating for the effect of the unknown motion blur.
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The class of algorithms that estimate the unknown blur in
addition to the HR image are called blind super-resolution
algorithms. The critical part of such algorithms is precise
estimation of the blur, which, in the context of camera shake,
depends on the kind of motion the camera undergoes during
exposure, and the nature of the scene being imaged. Prior
works that have addressed the blind SR problem ( [4], [5]
for instance) assumed that the images are uniformly blurred.
Sroubek et al. [4] constrained the motion of the camera to
pure in-plane translations and assumed a flat constant-depth
scene. This allowed them to model the blur as a convolution
with an unknown kernel or point spread function (PSF), and
the parameters of this unknown PSF had to be estimated.
A more recent work [6] too assumes a flat scene but allows
for space-varying blur due to general motion of the camera
during exposure. In such cases, the convolution model with
a single kernel for the entire image is no longer applicable.
To tackle this challenge, a projective motion blur model
based on homographies was used in [6]. However, this global
homography model breaks down if there are depth variations
in the scene because homographies apply only to planes. Thus,
the task of 3D blind SR from non-uniformly blurred LR
images is severely ill-posed because there is now an added
third unknown to be solved for – the underlying depth map
of the scene – in addition to the camera motion and the
HR image. To the best of our knowledge, no algorithms for
resolution enhancement exist if the motion blurred images are
of a 3D scene, and it is this problem that we address in this
work.

A. Related Works

Deblurring and super-resolution, though two extensively
studied topics, have mostly been dealt with independently.
We first briefly review single/multi-image blind deblurring
algorithms for planar and 3D scenes. We also look at tradi-
tional multi-image SR techniques that do not consider motion
blur. We would like to add that our survey is not exhaustive
since there are hundreds of papers on these two topics; we
mention below only some of the most influential works in
these areas. Finally, we undertake a careful scrutiny of the
few blind SR approaches in the literature that are most closely
connected to our work.

1) Deblurring: A lot of papers exist in the literature that
focus on the issue of removing motion blur due to camera
shake from images. Traditionally, the blurred image resulting
from camera shake has been modeled as the convolution of
the latent sharp image with a blur kernel [7]–[9]. This model
assumes that the camera undergoes only in-plane translations,
and the scene is fronto-parallel planar. The seminal work of
Fergus et al. [7] attempted to solve the single image blind
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deblurring problem by applying a sparsity prior on the PSF,
and enforcing the image gradients to follow a heavy-tailed
distribution. Shan et al. [8] addressed the same issue by
introducing a local smoothness prior to reduce ringing arti-
facts, while Xu and Jia [9] proposed a guided edge selection
strategy that detects large-scale structures and subdues small
edges not useful for kernel refinement. However, more recent
deblurring algorithms [10]–[13] allow for general motion of
the camera since it is now well-established that tilts and
rotations occur frequently in hand-held imagery [10]. These
techniques typically model the motion blurred image as an
average of projectively warped instances of the latent sharp
image assuming a flat constant-depth scene. The deblurring
schemes proposed by Hu and Yang [10], Gupta et al. [11],
Hirsch et al. [12] consider the camera motion to be comprised
only of in-plane translations and rotations. Hu and Yang [10]
use locally estimated PSFs to constrain the possible cam-
era poses to a low-dimensional subspace. Gupta et al. [11]
model the camera motion as a motion density function, while
Hirsch et al. [12] employ an efficient filter flow framework for
blur removal. It is important to note that the above methods
assume a fronto-parallel scene with constant depth. On the
other hand, Whyte et al. [13] approach the non-uniform blind
deblurring task using a depth-independent rotational model
where the blurring function is represented on a 3D grid
corresponding to the three directions of camera rotations. The
only work, to our knowledge, to jointly estimate depth and
remove non-uniform blur caused by camera motion is that of
Hu et al. [14]. However, their matte-based approach requires
manual intervention in the form of a scribble for each depth
layer from the user.

The deblurring problem is ill-posed if there is only a single
input observation, and is difficult to solve in a fully blind
form. The above methods do not exploit the potential of the
multi-image framework, where missing information about the
latent image in one observation is supplemented by infor-
mation in the other observations. Sroubek and Flusser [15]
assume a fronto-parallel planar scene and solve the multi-
image blind deblurring problem for the case of pure in-
plane translational camera motion using a variational prior.
Under similar assumptions of a planar constant depth scene,
Delbracio and Sapiro [16] and Ito et al. [17] leverage the
burst mode feature in cameras to obtain a deblurred result from
multiple images. Paramanand and Rajagopalan [18] tackle
the bilayer case comprising of a foreground and a back-
ground, and additionally allow for in-plane camera rotations.
Lee and Lee [19] have proposed a blur-aware algorithm for
reconstructing 3D scenes in which the blur kernel and the
depth of each pixel are simultaneously estimated. However,
their method assumes knowledge of the camera parameters.
Although multi-image blind deblurring algorithms require
little or no prior information about the blurs, they can hardly
cope with the downsampling operator in the SR model.

2) Super-Resolution: A large number of papers have
addressed the classical multi-image SR problem when the
images are not motion blurred. A good survey can be found
in Park et al. [1]. Maximum likelihood, maximum a pos-
teriori (MAP), the set theoretic approach using projection

TABLE I

OVERVIEW OF RELATED WORKS

on convex sets, and fast Fourier techniques have all been
shown to provide a solution to the SR problem. Spatial-domain
SR methods are preferred over frequency-domain approaches
since they can incorporate complex image priors for regular-
ization [1]. Farsiu et al. [3] proposed a robust SR framework
using l1-norm minimization and bilateral filtering. Employing
a variational Bayesian analysis, an algorithm for joint image
registration and super-resolution has been proposed in [23].
This work was later improved in [24] using a combina-
tion of sparse and non-sparse image priors. A coordinate-
descent approach for simultaneous global registration and
multi-image SR has been mooted in [25]. It must be noted
that these methods assume a fronto-parallel planar scene.
Mudenagudi et al. [26] approach the issue of super-resolution
of 3D scenes using a MAP-MRF framework, while Bhavsar
and Rajagopalan [27] present an integrated strategy to estimate
the HR depth and the SR image from multiple LR stereo
observations. Lee and Lee [28] integrate depth map estimation
and image super-resolution into a single energy minimization
framework with a convex cost function. Example-based SR
(also termed ‘image hallucination’) techniques [20], [21] that
seek an HR image from a single LR image have also been
proposed. These methods employ a database of LR and HR
image pairs to learn correspondences between LR and HR
image patches. When a new LR image is presented, its most
likely HR version is recovered based on these learned patch
correspondences. However, these techniques are known to
hallucinate HR details that may not be present in the true
HR image. Based on the observation that patches in a natural
image tend to recur within the same image, both at the same
as well as at different scales, Glasner et al. [22] sought to
combine the strengths of traditional multi-image SR as well
as example-based SR. It is important to note that state-of-
the-art SR techniques achieve remarkable results of resolution
enhancement only when there is no motion blur.

3) Blind Super-Resolution From Motion Blurred LR Images:
Sroubek et al. [4] take on the blind SR problem by building
a regularized energy function and minimizing it alternately
with respect to the original HR image and the camera motion.
The method of Ma et al. [5] is based on the premise that
the same region is not equally blurred across frames. They
propose a temporal region selection scheme to select the
least blurred pixels from each frame. Both these approaches,
however, assume that the images are uniformly blurred.
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Zhang and Carin [6] allow for space-varying blur due to gen-
eral camera motion and present a joint formulation for the
tasks of alignment, deblurring and resolution enhancement.
Note that all three of the above methods [4]–[6] assume that
the scene is flat and at a constant depth from the camera. The
blind super-resolution problem is extremely under-determined
when there are depth variations, and there are no published
algorithms that increase the image resolution if the blurred
observations are of a 3D scene. A succinct overview of
the works discussed thus far is given in Table I, where the
following notations have been used – BD: blind deblurring,
MBSR: multi-image blind super-resolution, S: single image,
M: multiple images, and SV: space-varying blur. A ‘×’ entry
in the column ‘3D’ denotes that only planar scenes can be
handled, while a ‘�’ signifies that both 3D and planar scenes
can be modeled. Likewise, a ‘×’ entry in the column ‘SV’
indicates that only space-invariant blur can be accounted for,
whereas a ‘�’ implies both space-invariant and space-varying
blur can be dealt with. The ‘NA’ (not applicable) entry is
because traditional SR algorithms do not model blur. The ‘#’
symbol applies to methods that employ a depth independent
model (i.e., do not explicitly solve for the depth map).

4) Our Proposed Method: The focus of this paper is on the
problem of recovering the latent HR image of a 3D scene given
multiple low-resolution observations that are non-uniformly
motion blurred due to camera shake during exposure. The burst
mode feature available in almost all modern digital cameras,
including cellphones, point-and-shoots, and SLRs, allows the
user to take a sequence of images in quick succession with a
single click. Images captured thus will have negligible change
in viewpoint since the motion is only due to incidental camera
shake. In this work, we consider input observations captured
using the burst mode since such images will not have large
registration errors. In addition, the narrow baseline ensures
that occlusion and parallax effects at depth boundaries are
not very large. We initially review the super-resolution motion
blur image formation model for fronto-parallel planar scenes,
and then propose an elegant extension to the 3D case using a
layered approach. Using this observation model, we propose
an algorithm to recover the latent HR image of the scene,
the underlying depth map and the associated HR camera
trajectories from the input LR observations. We leverage the
inter-image misalignment that results from capturing images
hand-held to first coarsely segment the scene into different
depth layers. This is achieved by running an optical flow (OF)
algorithm on a carefully selected image pair from the set
of input observations, and computing the magnitude of the
flow vectors to reveal the depth map. Small patches lying
on a constant depth layer in this depth map are extracted
from the LR images, and the global HR camera motion is
computed using only the information in these local patches.
Such a patch-based approach allows us to circumvent the
need to solve for all three unknowns jointly. Once the HR
camera trajectories have been estimated, we iteratively solve
for the latent HR image and the depth map using an alternating
minimization (AM) framework. Judiciously chosen priors on
the image and the depth map ensure that our AM scheme
converges within just a few iterations.

To summarize, the main contributions of this paper are:

• This is the first attempt to formally address the problem
of estimating the latent HR image of a 3D scene given
a set of LR observations that are non-uniformly blurred
due to camera shake during image capture.

• We advocate a 3D super-resolution motion blur model to
explain the image formation process, and an algorithm
based on this model to recover the underlying HR image.

• We propose an elegant patch-based approach to compute
the global HR camera motion directly using only local
information in the LR images.

• We also develop an alternating minimization framework
to jointly recover the latent HR image and the depth map
of the scene.

The organization of the rest of the paper is as follows:
we describe our 3D super-resolution motion blur model in
Section II. We initially begin by considering a planar scene
and later extend it to the 3D case. In Section III, we first
discuss in detail how the camera motion at HR is estimated
from the LR images. Next, we elaborate on our alternating
minimization scheme to jointly recover the latent HR image
and the depth map of the scene. Section IV contains results
of the proposed method on synthetic and real data, along
with comparisons with state-of-the-art techniques. Section V
concludes the paper.

II. THE 3D SUPER-RESOLUTION MOTION BLUR MODEL

In this section, we first discuss the super-resolution motion
blur model for fronto-parallel planar scenes. Later, we gener-
alize our framework to 3D scenes using a layered approach.

A. Planar Scene

Let us initially consider a static constant-depth planar scene
imaged using a hand-held camera. When the camera motion
is not restricted to pure in-plane translations, the convolution
model with a single blur kernel does not hold because the
apparent motion of scene points in the image will vary at dif-
ferent locations resulting in space-variant blur. In such a sce-
nario, the projective motion blur model [11], [13], [29], [30]
can be used to represent the blurred image resulting from
camera shake as a weighted average of warped instances of
the latent sharp image. In the context of super-resolution, this
extends to modeling the blurred LR image as a downsampled
version of the weighted average of warped instances of the
latent HR image. In the discrete domain, the operation of blur-
ring and downsampling can be represented by the following
equation

g = D

⎛
⎝∑

cl∈C
ωcl Hcl f

⎞
⎠ + n. (1)

Here g denotes the blurred LR observation, while f represents
the latent HR image of the scene as viewed by a camera
placed at the origin of the world coordinate system. The vector
g ∈ R

M1 M2×1 is the lexicographically ordered version of the
2D discrete LR image G ∈ R

M1×M2 , where M1 and M2
denote the number of LR rows and columns, respectively.
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Likewise f ∈ R
N1 N2×1 is the lexicographically ordered vector

version of F ∈ R
N1×N2 , where N1 and N2 indicate the rows

and columns at HR, respectively, and N1/M1 and N2/M2
are the downsampling factors along the two directions. The
parameter ω depicts the camera motion i.e., for each camera
pose cl ∈ C, the scalar ωcl denotes the fraction of the total
exposure duration for which the camera stayed in the pose cl .
The discrete camera pose space C, on which ω is defined, is the
finite set of sampled camera poses that the camera is free to
undergo i.e., C = {cl}|C|

l=1, where | · | represents cardinality
and ω denotes the vector of weights ωcl , cl ∈ C. The pose
space is discretized in such a way that the difference in the
displacements of a point light source due to two different
camera poses from the discrete set C is at least one pixel.
Akin to a PSF,

∑
cl∈C ωcl = 1 and ωcl ≥ 0. The matrix

Hcl ∈ R
N1 N2×N1 N2 warps f according to the camera pose

cl , and the vector n ∈ R
M1 M2×1 denotes the observation

noise. It is to be noted that ωcl in equation (1) describes the
motion at HR since Hcl operates on f , the HR image. Thus,
the term inside the bracket on the RHS represents the non-
uniform blurring of the latent HR image.

D ∈ R
M1 M2×N1 N2 is the downsampling operator or the

decimation operator that mimics the behaviour of the digital
sensors. The downsampling process consists of two stages – a
convolution with the sensor PSF, followed by sampling. Sensor
blur results from the finite-sized sensor integrating impinging
light over its surface during exposure. The sensor has maxi-
mum sensitivity at its center while it falls off towards the edges
with a Gaussian-like decay. The suitability of the Gaussian
function to model the sensor PSF has been experimentally
verified in [2] and, therefore, we use it here in our work.
The sampling operation can be viewed as the multiplication
by a sum of delta functions placed on an evenly spaced grid.
In matrix form, it can be represented as the Kronecker product
of a 1D sampling matrix with itself.

B. 3D Scene

We now extend the image formation model in equation (1)
to a 3D scene using a layered approach. Let us assume that
there are R depth layers in the scene, and the scene depth
of each layer is given by {dr }R

r=1. We denote one of these
layers as the reference depth layer rref, and its corresponding
depth as dref. We define the relative depth of each layer δr with
respect to this reference depth as δr = dref

dr
. Using the δr values

at each pixel, we can construct the relative depth map of the
scene χ ∈ R

N1 N2×1. Based on the depth map, we can also
split the HR image f into R disjoint constant-depth regions as

f =
R∑

r=1

fr . (2)

Here the notation fr indicates the r th depth region in the image.
The intensity of a pixel in fr is same as in the latent HR image
f if it belongs to the r th depth region, and 0 otherwise.

Equation (1) can now be rewritten for the 3D case as

g = D

⎛
⎝∑

cl∈C
ωcl

(
R∑

r=1

H(δr ,cl )fr

)⎞
⎠ + n. (3)

In equation (3), warped images from all the depth layers are
subjected to a weighted averaging followed by downsampling
to produce g. Although the camera motion is the same, even
for a single camera pose, the warps experienced on the image
plane vary with the depth. Therefore, the warping matrix H is
now a function of both the relative depth δr and the camera
pose cl . Each warp can be described by a homography P (δr ,cl )

as [13]

P (δr ,cl ) = Kv

(
[Rl] + δr

dref
Tl [0 0 1]

)
K−1

v , (4)

where Tl=[TXl TYl TZl ]T , Rl=[θXl θYl θZl ]T are the camera
translation and rotation vectors, respectively, and [Rl ] is the
matrix exponential equivalent of Rl [13]. The camera intrinsic
matrix Kv is assumed to be of the form Kv = diag(v, v, 1),
where v is the focal length. A camera that is free to undergo
any general motion has six degrees of freedom, three arising
from translations T along, and three from rotations R about the
three axes. However, it has been pointed out [10], [11], [13]
that in most practical scenarios, three degrees of freedom
are sufficient to model general camera motion. While [10]
and [13] used in-plane translations and rotations, [13] used
rotations about the three axes. In this work, we adopt the
former model since it also accounts for parallax. It is assumed
that the general motion of the camera can be approximated
by translations along the image plane and in-plane rotations.
In such a case, the homography P(δr ,cl ) simplifies to

P (δr ,cl ) = Kv

⎡
⎢⎢⎢⎢⎢⎣

cos θZl sin θZl

δr TXl
dref

− sin θZl cos θZl

δr TYl
dref

0 0 1

⎤
⎥⎥⎥⎥⎥⎦

K−1
v . (5)

The camera pose space C then becomes a 3D space defined
by the axes TX , TY and θZ , and P(δr ,cl ) is parameterized by
(δr , TXl , TYl , θZl ).

For the camera pose cl , the homography P (δr ,cl ) corre-
sponds only to the depth layer r . However, if the translation
and rotation observed on the image plane due to the camera
pose cl at a particular depth layer, say rref, are known, then,
with the knowledge of δr , we can compute the translation
and rotation induced on any other layer due to cl i.e., the
homography P(δr ,cl ) at any other layer can be estimated. Say
the depth layer rref at a depth dref underwent the motion
(TXl , TYl , θZl ), then the motion at other depth layers can be
computed as (δr TXl , δr TYl , θZl ) [18]. Observe that rotation is
invariant to the scene depth, while in-plane translations are
scaled by the relative depth value – scene points near the
camera experience more shift when compared to points that
are farther away. To sum up, if the motion induced on the
image plane at a reference depth dref due to the global camera
motion is known, then the motion at all other depths can be
estimated.

Motion blur in conjunction with the downsampling oper-
ation makes the problem of super-resolution from a single
image highly ill-posed. Hence, as discussed in the introduction,
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Fig. 1. Block diagram of the proposed framework.

Fig. 2. Synthetic experiment of a 3D scene containing four depth layers.
Row one: ground truth (GT) HR image and depth map, and row two: blurred
LR observations. Note that the LR and HR images are not displayed to scale;
the SR factor in this example is 2.

we supplement the missing information in a single observation
using multiple images.

In this work, we assume that K LR images gk , with
k = 1 to K , are available, and ωk is the associated HR camera
trajectory.

III. THE PROPOSED METHOD

Consider K motion blurred LR observations {gk}K
k=1 of a

3D scene which are related to the latent HR image f through
the depth map χ and the HR camera trajectories {ωk}K

k=1.
The objective is to recover f given only {gk}K

k=1. To this end,
we first crudely segment the scene into different depth layers
by applying an optical flow algorithm on the LR observations,
and label the layer with the maximum area as the reference
depth layer rref. Next, we compute the HR camera motion
with respect to rref using HR blur kernels estimated at a few
points lying on the reference depth layer in the LR images.
With the knowledge of the HR trajectories, we eventually solve
for the latent HR image f and the depth map χ within an
alternating minimization framework. The details of these steps
are explained in the following subsections. A block diagram
of the proposed framework is shown in Fig. 1.

To aid explanation, we consider the synthetic example
in Fig. 2. The latent HR image and the corresponding depth
map are shown in the first row. By convention, a scene point
that is closer to the camera has a higher intensity value in the
depth map than one that is farther away. To simulate burst
mode capture, we manually generated five connected camera
trajectories within the motion space and initialized the weights.
The parameters of the 3D camera motion space C were

selected as follows: θZ ranged between −2◦ to 2◦ in steps of
0.2◦, TX and TY ranged between -10 to 10 pixels in increments
of one pixel. The cardinality of the set C can be calculated as:
|C| = (Number of translation steps along X-axis) × (Number
of translation steps along Y -axis) × (Number of rotation steps
about Z -axis) = (−10 : 1 : 10 pixels along X-axis) × (−10 :
1 : 10 pixels along Y -axis) × (−2◦ : 0.2◦ : 2◦ about Z -axis) =
21 × 21 × 21 = 9261. Five blurred LR images were then
generated from the latent HR image by first performing depth-
dependent blurring followed by downsampling by a factor of
two (using the SR motion blur model of Section II). We then
added white Gaussian noise with signal-to-noise ratio (SNR)
of 30 dB, where

SN R = 10 log

(
σ 2

f

σ 2
n

)
,

σf and σn being image and noise standard deviations, respec-
tively. The space-variantly blurred LR images are shown in
row two of Fig. 2.

A. Initial Depth From Optical Flow

An initial rough estimate of the depth map of the scene
can be obtained using optical flow. Optical flow vectors yield
the displacement field between a pair of misaligned images.
Since our LR observations are captured using a hand-held
camera, not only can there be motion during the exposure
of a single image, there is also incidental motion between
successive captures. While intra-image motion results in blur,
inter-image misalignment enables optical flow estimation. The
flow vectors can be used to coarsely segment the scene into
different depth layers.

If the camera undergoes pure in-plane translational motion
between the capture of the two observations, then the depth
is inversely proportional to the magnitude of the optical flow
vector at that location. Hence, the magnitude of these vectors
directly yields the relative depth map of the scene. However,
this does not hold true in the case of camera rotation. Since
we assume that the camera is free to undergo translations as
well as rotations, our goal is to identify the pair of images
from the set of K LR observations with minimum camera
rotation between them. The depth map recovered from such
a pair using the magnitude of the flow will have minimum
error. To identify this pair, we compute optical flow between
all

(K
2

)
pairs of images. Next, we extract the histogram of

the phase of the optical flow vectors. Ideally, if the inter-
image motion is pure in-plane translation, then all the flow
vectors will have the same phase even though the magnitude
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Fig. 3. The depth map obtained using image pairs 1–2 and 3–5 are shown in columns one and three, respectively. The histogram of the phase of the optical
flow vectors for the same two pairs are plotted in columns two and four.

Fig. 4. The five columns correspond to the kernels at the center of the red patch in the five LR observations shown in row two of Fig. 2. In each column,
the PSF on the left represents the ground truth HR kernel, while the one on the right is estimated using the algorithm of Sroubek et al. [4].

varies with depth. Therefore, the image pair whose histogram
has the fewest active bins1 is the pair most suited for depth
map computation. The depth value that occurs the maximum
number of times in this depth map is the reference depth dref,
and the pixels having this depth value (need not be contiguous)
are flagged as belonging to the reference depth layer rref.

We used the optical flow algorithm of Brox et al. [31]
to estimate the flow vectors. We note that their method is
designed for sharp images, and there can be minor errors in the
estimated flow when a blurred pair is processed. However, our
experiments revealed that our proposed framework is robust
to such small errors since this initial depth map is used
merely to jump-start our AM scheme, and roughly localize the
dominant depth layer in the scene. To demonstrate our depth
map initialization step through an example, we select two pairs
of images from the LR observations in row two of Fig. 2. The
depth map and the histogram obtained from the two image
pairs are shown in columns one to four of Fig. 3. Notice that
the pair 1–2 has many active bins in its histogram because
of significant in-plane rotation between these two images.
Therefore, the associated depth map is also largely in error.
The images 3 and 5, on the other hand, have the least rotation
among all the

(5
2

)
pairs, and the corresponding histogram has

all its values concentrated in just 4 bins. Therefore, we use
the depth map from the 3–5 image pair to initialize our AM
scheme.

B. Estimation of HR Camera Trajectories

We first explain how we compute HR PSFs from suitably
selected patches in the LR images. We then elaborate on how
these locally-estimated HR PSFs reveal the global HR camera
motion. We also briefly describe why HR camera trajectory
estimation should be preceded by a kernel alignment step.

1) HR PSF Estimation: Our goal is to use the LR images to
estimate HR PSFs at points lying on the reference depth layer.
To this end, we use the algorithm of Hu and Yang [32] to

1We treat a bin as ‘active’ only if the frequency of occurrence is higher
than a certain threshold.

determine points with good texture and long edges belonging
to rref in the first LR image that are suitable for blur kernel
estimation. We randomly select Sp spatially-separated point
locations from this set such that patches cropped around
these points from the K LR observations lie entirely in the
reference depth layer rref. We denote the patches as {g1

i }
Sp
i=1,

{g2
i }

Sp
i=1,..., {gK

i }Sp
i=1. Although the blur is space-varying across

the image, we assume it to be uniform within each small
patch. We provide the set of patches (g1

i , g2
i , ..., gK

i ) as input to
the blind SR technique of Sroubek et al. [4] to compute the HR
blur kernels (h1

i , h2
i , ..., hK

i ) at the i th location. Fig. 4 shows the
ground truth and estimated HR PSFs computed from the red
patches in the LR observations in row two of Fig. 2. We repeat
this HR PSF estimation step at all Sp locations. We found from
our experiments that the estimates of the HR PSFs returned
by the method of [4] are quite accurate. See Fig. 4. It is to
be noted that image and motion are the only two unknowns
in this step of HR PSF estimation (depth is a constant since
the image patches are extracted from a single depth layer
in the scene), and the method of Sroubek et al. [4] alter-
nately minimizes these two parameters to obtain the optimal
HR PSFs.

2) HR Camera Trajectories From HR PSFs: For each LR
image gk, k = 1, 2, ..., K , our aim is to estimate the HR cam-
era trajectory ωk that concurs with the Sp observed HR blur

kernels {hk
i }

Sp
i=1 and their locations. Following [18], we express

the blur kernel hk
i as hk

i = Mk
i ω

k for i = 1, 2, ..., Sp . Here,
Mk

i ∈ R
Sh×|C| is a matrix whose entries are determined by

the location of the blur kernel and the bilinear interpolation
coefficients, and Sh is the number of elements in hk

i (i.e., for a
blur kernel hk

i ∈ R
U1U2×1, the scalar Sh = U1 ×U2). Note that

the Sp point locations were chosen on the LR grid and patches
were cropped around these points from the LR observations.
Since the camera trajectories are being estimated on an HR
grid, the Sp point locations should be scaled by the SR factor,
and our camera motion estimation step differs from the method
proposed in [18] in this important respect. By stacking all the
Sp blur kernels as a vector hk , and suitably concatenating the
matrices Mk

i for i = 1, 2, ..., Sp , the HR blur kernels can be
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Fig. 5. Ground truth and estimated HR trajectories.

related to the HR camera trajectory as

hk = Mkωk, (6)

where the matrix Mk is of size Sp Sh ×|C|. Note that ωk will be
a sparse vector in practice because only a few camera poses
cl out of all the possible poses in the motion space C will
be active during the exposure time. This allows us to impose
a sparsity constraint on ωk , and we estimate the HR camera
trajectory by minimizing the following cost

E(ωk) = ||hk − Mkωk ||22 + λ||ωk ||1
subject to ωk ≥ 0. (7)

We solve equation (7) using the nnLeastR function of the
Lasso algorithm in [33] which considers the additional non-
negativity and l1-norm constraints. Here, λ is a positive
scalar that controls the extent of sparsity of the vector ωk .
We estimate the HR trajectory ωk corresponding to each LR
observation gk , k = 1, 2, ..., K , separately by minimizing
equation (7).

The synthetically generated camera path and the estimated
HR trajectory for one of the five input observations are shown
in Fig. 5. It can be observed from the plots that the ground
truth and recovered trajectories are very similar in shape
demonstrating our algorithm’s ability to compute global HR
motion directly from locally estimated kernels.

3) Alignment of PSFs: If �(.) denotes a translational shift,
then a blurred LR image patch gk

i which is given by gk
i =

D(fi ∗ hk
i ) would also be equal to D(�−1(fi ) ∗ �(hk

i )), where
∗ denotes convolution, and fi is the corresponding patch
from the latent HR image. Therefore, while solving for the
local HR PSFs hk

i , there can be incidental shifts of small
magnitude in the estimated HR blur kernels with respect to
the ‘true’ blur kernels (which are induced at a point as a
result of blurring the latent HR image with the true HR
camera motion). Since the blur kernels at a particular location
are estimated independently with respect to kernels at other
locations, the shift could vary from one location to the next.
Unless the shifts in the HR PSFs are accounted for, they
cannot be related to a single ωk . Since the blurred patches
{gk

i }K
k=1 at a given location i are related to the same latent

HR image patch fi , if the shift of the latent image patch is
�−1, then the shift for all the K blur kernels will have to
be �. Hence, we need to determine the shifts of the blur
kernels corresponding to only one of the K observations, say
k = 1, and these shifts remain the same for the remaining
k = 2, ..., K observations. The camera motion ωk estimated

from the aligned blur kernels should have a low value of error
||hk − Mkωk ||22. We consider that one of the blur kernels, say
hk

1 does not undergo any shift and align the other blur kernels
with respect to this. We need to determine two translation
parameters for each of the other blur kernels. For all possible
combinations of the translations, we shift the blur kernels
hk

2, hk
3, ..., hk

Sp
, and evaluate the solution of equation (7). Since

the magnitude of the shifts is generally small, and the number
of blur kernels used is typically low (around 4), finding the
optimum shifts (that minimize the error ||hk −Mkωk||22) is not
computationally prohibitive.

C. Alternating Minimization

Once the camera motion has been computed, the next step
is to iteratively estimate the depth map χ and the latent HR
image f using the K LR observations {gk}K

k=1. We propose
an alternating minimization strategy to solve for the two
variables wherein we fix one unknown and compute the other,
in an iterative manner. The minimization sequence (χ p, f p),
where p indicates the iteration number, can be built by
alternating between two minimization subproblems. Starting
with an initial estimate of depth map χ0 (the depth map from
optical flow upsampled by the super-resolution factor), the two
alternating steps are: step 1) estimate the latent HR image f p

using the previous iterate χ p−1 of the depth map, step 2) use
the current estimate of the image f p to compute the depth
map χ p .

Since the scene is 3D, a scene point that is visible in one
camera pose may be occluded by a foreground depth layer
when the camera moves to a different pose. When the camera
moves during the exposure duration of an image, it passes
through a finite set of poses from the discretized camera pose
space C. For every observation k and for each camera pose cl ,
we define a visibility function V k

cl
on the HR grid. The binary

function V k
cl
(y), defined with respect to the current estimate

of depth in our AM scheme, takes the value 1 if the pixel at
a particular location y is visible2 and has a positive camera
pose weight ωk

cl
associated with it, and is 0 otherwise. The

overall visibility V k(y) of a pixel y in the observation k is
then defined as

V k(y) =
{

1, if ∃cl ∈ C such that V k
cl
(y) = 1,

0, if ∀cl ∈ C, V k
cl
(y) = 0.

(8)

In other words, we label a pixel y in the observation k as
visible if it is unoccluded in at least one of the poses that the
camera passes through during exposure. Note that our notion
of overall visibility is different from the definition of visibility
in Wei and Quan [34] in that ours encompasses a set of camera
poses. Wei and Quan [34] limit their discussion to a single
homography since they do not consider motion blur. We also
introduce a binary modulating function on the LR grid as

W k(x) =
{

1, if V k(y) = 1, and ∀y ∈ Y, V k(y) = 1,

0, otherwise.
(9)

2We use the definition of visibility in Wei and Quan [34] which states that a
pixel after warping is ‘visible’ if it is unoccluded by foreground depth layers.



5344 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER 2017

Here x is the LR pixel obtained by applying the downsampling
operator D on y and its neighbours Y lying on the HR grid.
The function W k(x) takes the value 1 only when y and all
its neighbours Y are visible. During each iteration of our AM
scheme, we modulate the data term in our cost function using
W k as we shall see in the following discussion.

1) HR Image Estimation: When the HR camera motion and
the depth map χ p−1 are known, and f is to be estimated,
equation (3) can be expressed in the matrix-vector notation as

gk = DHkf + nk, (10)

where Hk ∈ R
N1 N2×N1 N2 is the matrix that performs the

depth-dependent non-uniform blurring operation of the various
depth layers in the scene.

To solve for the latent HR image f , we formulate an energy
function based on the observation error and a regularization
term as

E (f) =
K∑

k=1

||Wk (DHkf − gk)||22 + αfT Lf, (11)

where the matrix L comprises of elements that depend on the
gradient of f . It is the discrete equivalent of the variational
prior and is a positive semidefinite block tridiagonal matrix [4].
It exhibits isotropic behaviour in smooth areas, while also
preserving edges. Here Wk ∈ R

M1 M2×M1 M2 is a diagonal
matrix constructed from W k in equation (9) that decides
whether or not the data cost should be enforced for a particular
LR pixel in each input observation.3 To obtain the current
estimate of the HR image f p , we minimize equation (11)

f p = argmin
f

E(f) ⇒ ∂ E

∂f
= 0

⇐⇒
(

K∑
k=1

HkT
DT WkT

WkDHk + αL

)
f

=
K∑

k=1

HkT
DT WkT

Wkgk . (12)

We used the method of conjugate gradients to solve
equation (12).

2) Depth Map Estimation: As discussed in Section II-B,
if the motion induced on the image plane at a reference
depth dref due to the global camera motion is known, then
the motion at other depths can be computed by scaling the
translational parameters. The scale factor at each pixel is equal
to the relative depth δr at that location, and our objective is
to determine the scale factors at all pixels (i.e., the relative
depth map χ p) using the camera motion ωk estimated with
respect to rref, and the current iterate of the image f p.
To this end, we model the depth map as an MRF and obtain
the MAP estimate using the loopy belief propagation (LBP)
algorithm proposed in [35]. The algorithm is iterative, and the
MAP estimate improves after each iteration until convergence

3Since Hk , Wk are built using the previous iterate of the depth map
χ p−1, the correct notation for them in equations (10) and (11) would be
Hk p−1

, Wk p−1
. However, we drop the superscript p−1 for notational brevity.

is attained. The advantage of using such an approach is two-
fold – (i) the MAP-MRF framework of [35] is modeled as a
label assignment problem (with δr being the labels) which goes
hand-in-hand with our discrete layered 3D model, and (ii) we
can avoid the evaluation of derivatives which is quite tedious
especially in the case of space-varying blur. Furthermore,
we can incorporate regularization by defining a smoothness
cost since the depth map is homogeneous in most regions. This
regularizing term also ensures that sharp boundaries between
depth layers are preserved.

The cost function for the LBP algorithm for assigning the
relative depth value δr at a particular pixel y on the HR grid
is given by

E(δry) =
K∑

k=1

(
gk(x) − D

((∑
cl∈C

ωk
cl

H(δry ,cl )f
p
)

(y)

+
∑
y∈Y

(∑
cl∈C

ωk
cl

H(δry ,cl )f
p
)

(y)

))2

+
∑
y∈Y

μ min(|δry − δry |, β). (13)

The first term in the above equation corresponding to the data
cost is formulated based on the observation model – only when
the HR pixels are warped and averaged according to the correct
HR depth will they form a group which, when downsampled,
attains the least cost when compared with their corresponding
LR pixel intensity. The second term is the smoothness cost that
penalizes the difference in the labels of neighboring pixels.
To allow for discontinuities, this cost should take a constant
value when the difference becomes large. Therefore, we adopt
the commonly used truncated linear model [35] where the
threshold β determines when the cost stops increasing, and
μ is a weighting parameter.

We define a discrete search space for the relative depth δr

as 0.1:10 with a step size of 0.2. Note that the search space
extends on either side of the reference depth layer rref which
has a relative depth unity because the position of rref with
respect to the foreground and background layers is a priori
unknown to our algorithm.

The two steps of the alternating minimization
scheme – latent image estimation and depth refinement
– are performed iteratively until convergence. The criterion
for convergence is a threshold on the root mean square
error between the latent image estimate of current and
previous iterations. We found from our experiments that our
AM scheme exhibits good convergence properties, and attains
the desired solution within 5 to 6 iterations. An overview
of our approach is provided in Algorithm 1. It is important
to note that our method requires only the LR images as
input. It demands no additional knowledge of the camera
parameters or the scene for estimating the latent HR image.

The progress of the AM scheme with iterations is displayed
in Fig. 6. Column one shows the estimate of the latent HR
image after the first pass, computed using the initial depth
map (in column three of Fig. 3) returned by optical flow.
Notice that there is residual blur in the image due to errors
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Fig. 6. The progress of our alternating minimization framework with iterations.

Algorithm 1 3D Blind Super-Resolution From a Set of Non-
Uniformly Motion Blurred LR Images

Require: : Motion blurred LR images {gk}K
k=1 of a 3D scene.

Ensure: : HR camera trajectories ωk , depth map χ , and latent
HR image f .

1: Estimate initial depth map χ0 using optical
flow (Section III-A).

2: Choose the depth layer having the maximum area in χ0 as
the reference depth layer rref.

3: Extract Sp patches lying entirely in rref from all K LR

observations {g1
i }

Sp
i=1, {g2

i }
Sp
i=1,..., {gK

i }Sp
i=1 (Section III-B.1).

4: Estimate HR PSFs (h1
i , h2

i , ..., hK
i ) from each set of patches

(g1
i , g2

i , ..., gK
i ) at all i = 1, 2, ..., Sp locations.

5: Estimate the camera motion {ωk}K
k=1 using aligned HR

PSFs (Sections III-B.2 and III-B.3).
6: Let p = 0, and f0 be initialized to all zeros.
7: repeat
8: p = p + 1
9: Estimate the latent HR image f p using equation (12)

(Section III-C.1).
10: Estimate the depth map χ p using loopy belief propaga-

tion by minimizing equation (13) (Section III-C.2).
11: until RMS(f p − f p−1) > threshold

in the depth map. Columns two to five show the depth map
and the HR image after the third and the fifth iteration. The
boundaries are nicely recovered in our final depth map and
our output HR image is deblurred at all depth layers. This
a clear indicator of the importance of refining the depth map
with iterations, and the success of our alternating minimization
approach. Note that the HR image in column one is the result
one would have obtained without the AM framework.

IV. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our proposed approach
on synthetic as well as real images. For our synthetic experi-
ments, we use the two metrics, PSNR (Peak Signal to Noise
Ratio) and SSIM (Structure Similarity Measure), to quantify
performance.

We begin with a simple synthetic example of a planar scene
with no depth variations. The image of an eye-chart was used
as the latent HR image (see row two, column one of Fig. 7).
The space-variantly blurred LR images are shown in row one
of Fig. 7. They were generated in a similar manner as the
LR observations in row two of Fig. 2. The parameters of the

Fig. 7. Synthetic example of a planar scene. Row one: blurred LR
observations, row two: ground truth HR image, the output of Paramanand and
Rajagopalan [18] super-resolved using the single image SR algorithm of [21]
(super-resolution step denoted by ↑), and SR results of Sroubek et al. [4]
and Ma et al. [5], row three: our LR result super-resolved using [21], depth
map from optical flow, our estimated depth map, and our HR output image,
and row four, column one: zoomed-in regions of the bottom line of text from
the LR observations in row one, and column two: zoomed-in regions from
GT HR, [18] ↑, [4], [5] in row two and our LR ↑, our HR output in row
three, respectively. Note that the LR zoomed-in regions have been scaled to
the same size as the HR zoomed-in regions for display.

camera motion space C were chosen as: TX , TY = (−10 : 1 :
10 pixels), and θZ = (−2◦ : 0.2◦ : 2◦). To assess the proposed
method’s robustness to noise, we chose a lower SNR in this
case than for the example in Fig. 2; Gaussian noise with an
SNR of 20 dB was added. The initial depth map obtained using
optical flow is shown in row three, and it can be observed that
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Fig. 8. Row one: Output image of Paramanand and Rajagopalan [18] super-resolved using [21], depth map of [18], and result of Sroubek et al. [4], row
two: result of Ma et al. [5], output image of Hu et al. [14] super-resolved using [21], depth map of [14], and our LR output super-resolved using [21], and
row three: zoomed-in regions from the first LR observation in row two of Fig. 2, the GT HR image in column one of row one of Fig. 2, [18] ↑, [4] in row
one, [5], [14] ↑ in row two, without AM in column one of Fig. 6, our LR ↑ in row two, and our HR output in column five of Fig. 6.

although the OF algorithm correctly assigns the same depth
value to most pixels in the image, certain small segments are
in error. From the dominant depth layer in this depth map,
we used the algorithm of [32] to identify pixel locations in
the first LR observation that are suited for PSF estimation.
Next, we randomly selected four spatially separated locations
from this set. Patches around these locations were cropped
from all the LR observations. We used the algorithm of [4] to
determine the HR blur kernels corresponding to these patches
at each of the four locations. The HR trajectories associated
with each LR observation were then computed from these
HR PSFs using the method described in Section III-B. The
recovered depth map and the deblurred HR image obtained
using our alternating minimization framework are shown in
row three of Fig. 7. Our estimated depth map, in accordance
with the scene, is planar i.e., has the same depth value at
all pixels. For comparison, we super-resolved by a factor of
two the LR output image returned by the multi-image blind
deblurring method of Paramanand and Rajagopalan [18] using
the single image SR algorithm of [21]. This result is shown in
row two of Fig. 7. All five LR observations were given as input
to the algorithm of [18]. The code of [21] is publicly available.
The outputs obtained using the convolution SR model in [4],
and the SR technique of [5] based on least blurred pixels are

also provided in row two of Fig. 7. The SR code of [4] was
made available to us on request by the authors, while the
implementation of [5] is available online. We also performed
a test wherein our own proposed framework was applied, but
with the crucial difference that the camera motion, depth map,
and image were estimated at low resolution (i.e., LR PSFs were
computed from patches in Step 4 of Algorithm 1, and the
camera motion in Step 5 was computed from these LR PSFs
on an LR grid instead of HR. Subsequently, both the latent
image estimation in Step 9 and the depth map estimation in
Step 10 were implemented at low resolution). The output LR
image produced by this pipeline (which, in effect, functions
as a depth-aware multi-image deblurring method) was super-
resolved using the SR algorithm of [21], and the result of
this baseline comparison is shown in row three, column
one of Fig. 7. Zoomed-in regions from the five blurred LR
observations and the HR images (see caption of Fig. 7) are
presented for comparison. The methods of Sroubek et al. [4]
and Ma et al. [5] do not perform well since both assume space-
invariant blur across the LR images. Although the deblurring
scheme of Paramanand and Rajagopalan [18] allows for space-
varying blur, both motion and image are computed at LR. This
is also the case with the LR baseline comparison. Unlike the
fragmented LR pipeline, our proposed method performs joint
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Fig. 9. Noise analysis for the examples in Figs. 2 and 7.

TABLE II

QUANTITATIVE EVALUATION FOR THE EXAMPLE IN FIG. 2

deblurring and resolution enhancement by directly computing
HR motion from blurred LR frames. The improvement in
deblurring quality over the methods of [18] as well as our own
LR baseline can be distinctly observed from the HR zoomed-in
regions. The text is crisp and clearly legible in our result.

The output image of Paramanand and Rajagopalan [18]
super-resolved using the SR algorithm of [21], and the depth
map returned by the method of [18], for the synthetic exper-
iment in Fig. 2 are shown in Fig. 8. The method of [18] is
tailored only for bilayer scenes (notice that their estimated
depth map has only two layers), while the example we have
considered has four depth layers. Thus, blur is not completely
removed from all the foreground layers in their output. The
result of Sroubek et al. [4] too has residual blur. The algorithm
of Ma et al. [5], on the other hand, oversharpens the image. For
comparison, we also provided the least blurred of the five LR
observations as input to the depth-aware single image deblur-
ring technique of Hu et al. [14]. The output image of [14]
after super-resolution using [21], and the depth map estimated
by [14] are shown in the second row. The method of [14]
wrongly assigns all three foreground layers to a single depth
value leading to poor deblurring quality. The LR baseline
output has also been provided, and it can be observed that the
result is inferior in quality to the HR image estimated using
our proposed scheme. The yellow, green, and blue patches
from the first of the five LR images in row two of Fig. 2
have been zoomed-in and displayed. HR zoomed-in regions
at the corresponding locations have also been provided for
qualitative assessment. We have included one more synthetic
experiment in the supplementary material to demonstrate our
proposed method’s ability to handle even inclined planes and
smoothly-varying depth values.

To quantify the performance of our algorithm we evaluated
the PSNR and SSIM measures, and these values are presented
in Tables II and III. The performance improvement achieved
by our method over the state-of-the-art is quite evident from
the results.

TABLE III

QUANTITATIVE EVALUATION FOR THE EXAMPLE IN FIG. 7

Fig. 10. Row one: blurred LR observations, row two: output image
of Paramanand and Rajagopalan [18] super-resolved using [21], result of
Sroubek et al. [4] and Ma et al. [5], row three: our LR output super-resolved
using [21], and our HR output image, and row four, column one: zoomed-in
regions from the LR observations in row one, and column two: zoomed-in
regions from [18] ↑, [4], [5] in row two, and our LR ↑, our HR output in row
three, respectively.

For a more extensive evaluation of our algorithm’s noise
handling capabilities, following [4], we added Gaussian noise
with SNR varying from 50 dB to 10 dB, and reran the
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Fig. 11. Row one: blurred LR observations, row two: output image of Paramanand and Rajagopalan [18] super-resolved using [21], depth map of [18], results
of Sroubek et al. [4] and Ma et al. [5], row three: output image of Hu et al. [14] super-resolved using [21], depth map of [14], depth map from optical flow,
row four: result obtained without AM, our LR result super-resolved using [21], our depth map and our HR output image, and row five: zoomed-in regions
from the first LR observation in row one, [18] ↑, [4], [5] in row two, [14] ↑ in row three, without AM, our LR ↑, and our HR output image in row four,
respectively.

experiments in Figs. 2 and 7. We repeated the whole procedure
ten times for different realizations of noise. The plot of Fig. 9
summarizes the obtained outputs in terms of average PSNR.
Qualitative results have been included in the supplementary
material. In practice, the level of noise depends on the amount

of light during acquisition and also on the quality of the
sensors. Most cameras today have SNR around 50 dB, but
with decreasing illumination, it can drop to 30 dB [4]. It can
be seen from the plot of Fig. 9 that our proposed algorithm
maintains stable performance over this practically encountered
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Fig. 12. Row one: blurred LR observations, row two: output image of Paramanand and Rajagopalan [18] super-resolved using [21], results of Sroubek et al. [4]
and Ma et al. [5], and our HR output image, and row three: zoomed-in regions from the first LR observation in row one, [18] ↑, [4], [5], and our HR output
in row two, respectively.

range (50 to 30 dB). For very noisy images (20 dB and below),
a drop in performance was observed. However, under normal
capture conditions, such a high level of noise is uncommon.

The data for the real experiments in Figs. 10 to 14 were
captured using a hand-held camera. The super-resolution factor
was selected as two for all these examples. The first case
in Fig. 10 corresponds to a planar scene of a poster. The
input LR images displayed in row one have space-variant
blur due to camera shake during image capture. The outputs
of Paramanand and Rajagopalan [18] after super-resolving
using [21], Sroubek et al. [4], Ma et al. [5], and the LR
baseline are provided for comparison against the deblurred
SR image obtained using our proposed scheme. Our output
is sharp with clearly legible text while competing approaches

either have residual blur or deblurring artifacts as can be seen
from the zoomed-in regions.

We next consider a scene (see Fig. 11) similar to the real
examples in the experimental section of [14]. Two textured
wallpapers at a distance of approximately 2 meters from the
camera formed the background, while the yellow box on the
bottom-right closest to the camera was around a meter away.
The translational motion of the camera was dominant in some
images, and it can be observed from the LR observations
that the foreground depth layers appear more blurred when
compared to the layers at the back. The three zoomed-in
regions shown in the last row of Fig. 11 are selected from
three different depth regions. A visual examination clearly
reveals that only our proposed method is able to deblur and
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Fig. 13. Two more real examples with challenging depth variations.

super-resolve all three regions correctly. The deblurring tech-
nique of [18] can only handle two depth layers and introduces
ringing artifacts in the middle depth layer. The SR approaches
of [4] and [5] can neither cope with non-uniform blur nor depth
variations, while the algorithm of [14] is at a disadvantage
since it works with a single image. We would like to add
that the first author of [14] provided us with the outputs of
their method for the examples in Figs. 8 and 11. Artifacts
can be observed in the green zoomed-in region of the LR
baseline, whereas the text is legible in our HR output. Also
notice how the depth layers corresponding to the background
and the cornflakes box on the left, though merged in the
initial OF depth map, have been accurately recovered in our
estimated depth map.

The next example in Fig. 12 involves greater distances (of
the order of 2 to 10 meters) between the camera and the scene.
The scene has two advertisement boards placed at two different
depths against a background, forming a piece-wise planar
3D scene. The method of [18] does deblur the background.
However, the foreground layers are not properly restored

(see the zoomed-in regions). The outputs of both [4] and [5]
have deblurring artifacts. In contrast, our algorithm recon-
structs the striped patterns on the shirt in the middle layer
accurately. The black circular patterns in the background too
are restored without any artifacts.

The last two real experiments in Fig. 13 are more challeng-
ing from the perspective of depth variations in the scene. The
examples considered so far had depth layers that were predom-
inantly fronto-parallel planar. The outdoor scenes in Fig. 13
are more difficult in that there are both gradual as well
as sharp depth variations in the scene. Even under these
demanding situations, our proposed method is quite effective
at recovering the depth map, as can be observed from our
results. The improvement in quality and legibility of the text
post deblurring and super-resolution is evident upon examining
the LR and HR zoomed-in regions.

Limitations: Our patch-based motion computation step
allowed us to pick regions containing texture suitable for
kernel estimation. Good texture is key not only to motion
estimation but depth map recovery as well. As with other
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Fig. 14. A real example illustrating the limitations of our method.

methods ([36]) that estimate depth using motion blur cues,
our method too can yield incorrect depth maps if the intensity
images have large textureless (i.e., homogeneous) regions.
An example is shown in Fig. 14. Observe that although the
gradual variation in the depth has been nicely captured in
the green patch corresponding to the book, the depth labels
in the blue patch are in error because the intensity image is
mostly homogeneous in this region and contains no useful
information for depth estimation. Similar is the case with the
depth values in the red patch that should all ideally have
been the same since the background (which is textureless)
and the book are at the same depth. Another limitation is
our method’s inability to distinguish very fine details in the
depth map i.e., objects or structures that are comparable to
the blur kernel size and are only a few pixels wide (see the
yellow patch). However, it should be noted that the deblurred
and super-resolved image does not contain any noticeable
artifacts or residual blur.

V. CONCLUSIONS

We proposed a multi-image super-resolution technique that
takes non-uniformly motion blurred LR images as input to
estimate the latent HR image of the 3D scene. The underlying
depth map and the associated HR camera trajectories are
obtained as by-products. Global camera motion was estimated
using HR PSFs computed from LR patches. While depth
was refined using a loopy BP algorithm, a total variation
regularizer was used to aid the image estimation step of
our AM scheme. The efficacy of the proposed algorithm
in advancing the state-of-the-art was amply demonstrated
through challenging synthetic and real examples. Qualitative
and quantitative evaluations were also provided. As future
work, we plan to extend our framework to handle dynamic
objects and changing illumination in the input images.
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