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Motivation

I Trade-of between aperture size and exposure time for acquiring a well
exposed image.

I Results in either defocus or motion blurred images.

Input Our result Depthmap
I Goal: Jointly estimating the depth and the latent image from a single

space- variantly blurred image using blur as a cue

Blur-Invariant Sparse Representations

Figure 1: Dictionary replacement and blur-invariant sparse representation.

I A blurred image Y can be represented in terms of latent image X and
kernel h as

Y = h⊗X = h⊗D ◦ Λ = Db ◦ Λ (1)

h⊗D is denoted as Db, a blurred version of dictionary D.
I If blur kernel is known the latent image can be recovered from the

blur-invariant sparse representation Λ by dictionary replacement

Dictionary based Depth Estimation

I Blur and depth are inter-related
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Figure 2: Scaling of blur kernels with depth. (a-b) Motion blurred image and corresponding

kernel grid. (c-d) Defocused image and corresponding kernel grid.

I Y : the observed blurred image of a 3D scene and h0: the blur kernel
corresponding to the most blurred region in the image.

I Blur at any other position is a scaled down version of h0 by blur depth
relation.

I Depth estimation boils down to estimating the scale of the blur kernel at
each location.

I Solved by MRF

arg min
i

DCi(k) +
∑
k′∈N

SC (̄ik′, ik) (2)

DCi(k) is the data cost and SC is the edge aware smoothness cost.
I For a particular sparsity, the dictionary Dbi that gives the best

representation of Y is used to choose the correct scale at that patch
location.

I Data cost for assigning a scale i at pixel location k is

DCi(k) = ||Y (k)− Ȳi(k)||22 where Ȳi = Dbi ◦ Λi (3)

where Ȳi is an approximation of Y obtained from the sparse representation
(Λi) and the blurred dictionary (Dbi) corresponding to blur kernel hi.

I The deblurred image is formed by picking pixels from a stack of deblurred
results according to the estimated scale.

Experimental Results

I Blur Magnification
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Figure 3: Blur magnification: (a) Input image focused in the front. (b) Deblurred result. (c)

Estimated blur map. (d) Background blur magnified.

I Refocusing

(a) (b) (c) (d)
Figure 4: Refocusing application: (a) Input image along with zoomed-in patches. (b) De-

blurred result. (c) Blur map. (d) Refocused image along with zoomed-in patches.

I Motion Deblurring

(a) (b) (c)
Figure 5: (a) Blurred input image. Deblurred using (b) [2] and (c) our method.

I Object blur

(a) (b) (c) (d)

Figure 6: Object motion: (a) Blurred input image. (b) Our result. (c) Recovered blur map.

(d) Zoomed-in patches from (a) and (b), respectively.

I Comparison

(a) (b) (c) (d)
Figure 7: Comparison with Hu et. al [1]: (a) Input image. (b) Deblurred result of [1]. (c)

Our result. (d) Zoomed-in patches from (a), (b) and (c), respectively.
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