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Abstract

In this paper, we address the problem of jointly estimating the latent image and the
depth/blur map from a single space-variantly blurred image using dictionary learning.
The approach taken is based on the central idea of dictionary replacement viz. the sparse
representation of a blurred image over a blurred dictionary is equivalent to that over a
clean dictionary. While most of the dictionary-based deblurring methods consider planar
scenes with space-invariant blur, we handle 3D scenes with space-variant blur caused
by either camera motion or optical defocus. For a given blurred image, the dictionary
blurred with the corresponding blur kernel provides the best representation with the least
error. We formulate our problem of blur map and latent image estimation as a multi-label
MRF and solve it using graph-cut. Experimental results on defocus as well as motion blur
depict the effectiveness of our scheme.

1 Introduction
Technological advancements have revolutionized the imaging industry. New cameras in the
market are now equipped with motion sensors, image stabilizer and high processing power.
Yet it has not gone so far as to completely alleviate blurring distortions caused by camera
motion or defocus effects. To capture a well-exposed frame, there is typically a compromise
between aperture and exposure time. Increasing the aperture reduces the exposure time
thereby minimizing motion blur during capture. However, it leads to reduced depth of field
which can result in some regions being optically defocused in the image. On the other hand,
a smaller aperture creates a larger depth of field but warrants increase in exposure leading
possibly to motion blur.

Image deblurring has been widely studied to deal with defocus [19, 29] and motion blur
[22, 25, 27]. Non-blind deblurring techniques assume that the distortion function is known
and proceed with restoring the latent image using Weiner filtering, Richardson-Lucy [20],
etc. On the other hand, blind techniques iteratively solve for the latent image as well as
the blur kernels using priors (on both) for convergence. Since blind deblurring is highly ill-
posed, most of these methods work with multiple input images that are degraded by different
degrees of blur. Amongst the methods that deal with single image motion deblurring, most
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(a) (b) (c) (d) Zoomed-in patches

Figure 1: Result of our proposed dictionary based restoration of a defocused image: (a) Input
image. Deblurred result using (b) [9] and (c) our method. (d) Our estimated blur map (higher
intensity indicates higher blur). Zoomed-in patches of (a), (b) and (c), respectively.

consider space-invariant blur that are represented as mere convolutions [14]. These only hold
for planar scenes with camera motion restricted to in-plane translations. Some of the issues
with these methods are that they are quite complex and suffer from deblurring artifacts.

Dictionary-based deblurring methods were proposed to circumvent the explicit need for a
regularizer. Defocus deblurring using conventional deconvolution methods is not quite effec-
tive due to zero crossings in the frequency spectra for a Gaussian aperture [29]. Dictionary-
based deblurring methods have shown promising results in this direction, but are restricted
to space-invariant blur. These methods work on the central idea that natural images have a
sparse representation in an over-complete dictionary. These dictionaries can be learned using
K-SVD [1]. Zhang et al. [28] propose an incremental deblurring method which can handle
motion blur. A centralized sparse representation based deblurring method is discussed in [6].
Lou et al. [17] propose the idea of a blur-invariant sparse representation for the image to re-
store space-invariant Gaussian blurred image. However, all these methods are non-blind and
require knowledge of the blur kernel. Coupled dictionary-based deblurring in [26] requires
the blur dictionary to be learned along with the clear dictionary. For inputs blurred with
multiple blur kernels, the dictionary pair need to be learned for each blur kernel separately,
which makes it computationally complex. There are also dictionary-based blind deblurring
methods which estimate the kernel and latent image iteratively [8, 9]. These are restricted to
convolution models and fail in the case of 3D scenes where the blur varies with depth. Fig.
1 depicts the failure of convolutional model when the input image has space-variant defocus
blur induced by depth variations. In the far focused image (Fig. 1(a)), the leaf in the front
is defocused while the background is in focus. The dictionary-based method in [9] which
assumes global blur cannot account for these blur variations (Fig. 1(b)).

There also exist works that deal with space-variant blur. Multiple image based depth
recovery and deblurring from motion blurred scenes has been attemped in [12]. Paramanand
et al. [18] propose a method to recover depth from a space-variantly blurred image pair but
restricted to bilayer scenes. Depth from defocused images has been handled in [2, 29], but
requires at least a pair of defocused images.

Different from previous works, we attempt here dictionary-based space-variant deblur-
ring from a single image. The main challenge encountered in such a situation is that there
are too many unknowns (the latent image intensity and depth/blur at each pixel location)
to solve for from a single-blurred image. We elegantly exploit blur-depth dependency and
sparseness of natural images within a dictionary to jointly estimate the depth and the latent
image. Although the work in [10] has attempted a similar problem, it considers only camera
motion blur. They solve it as a segment-wise depth estimation problem and with a user-
assisted segmentation step where each segment corresponds to one depth layer. In contrast,
our method is automatic (user-input-free). It does not require any initial segmentation and
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works irrespective of the blur type. In the case of motion blur, we restrict camera motion to
in-plane translations to preserve blur-depth dependency. The output of our method for the
defocusing example is given in Fig. 1(c). Our method not only provides a good estimate of
the latent image but also yields the blur/depth map of the scene (Fig. 1(d)).

The main contributions of our work are summarized below.

• To the best of our knowledge, this is the first work of its kind to attempt space-variant
deblurring and depth estimation from a single image using the notion of dictionary
replacement.

• Our generic dictionary based deblurring algorithm works irrespective of the blur type
(motion/defocus) and for depth varying scenarios.

2 Blur-Invariant Sparse Representation
Sparsity model-based representations assume that any signal can be modeled as a linear com-
bination of a few atoms from a pre-learned dictionary. The dictionary that sparsifies a given
set of signals can be learned apriori using K-SVD techniques. Given a dictionary D(n×L)
learned from a set of training patches of size (

√
n,
√

n), the image patch x can be represented
using the sparse coefficient vector (α) as xn×1 = Dn×LαL×1. The sparsest solution for α

can be found by posing the problem as an l0 minimization problem which is relaxed to l1
minimization for simplicity. For the pth image patch xp, αp can be estimated as

argmin
αp

||RpX−Dαp||22 +λ ||αp||1 (1)

where Rp(n×N)
represents the matrix that extracts the pth patch from the image X(N×1). This

can be solved by Lasso [23] or by using greedy algorithms [24]. We use the greedy method
of orthogonal matching pursuit. From the estimated sparse coefficients for each overlapping
patch, the image X can be approximated as

X∗ ≈

(
∑
p

RT
p Rp

)−1

∑
p

RT
p Dαp = D◦Λ (2)

where Λ is the set of sparse coefficients at all spatial locations and ◦ denotes patch-wise
reconstruction and merging operation at all spatial locations.

An image degraded by space-invariant blur can be modeled by convolution as

Y = h⊗X = h⊗D◦Λ = Db ◦Λ (3)

where h represents the blur kernel, Y is the observed blurred image, X is the latent image
and ⊗ represents the 2D convolution operation. h⊗D is denoted as Db, a blurred version
of dictionary D, where each atom of D is blurred using the kernel h. This implies that when
kernel h is known (as in non-blind deblurring), the signal X can be recovered from Y using
the blur-invariant representation Λ. Dictionary replacement-based deblurring techniques, in
fact, work on this principle. A visualization of the blur-invariant sparse representation is
provided in Fig. 2.

Existing works on dictionary replacement [15, 17] deal with space-invariantly blurred
images of fronto-parallel planar scenes where the blur is modeled as a simple convolution
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Figure 2: Dictionary replacement and blur-invariant sparse representation.

throughout the image with a single kernel. But the assumption of space-invariant blur is too
restrictive and does not hold in most real scenarios. In this work, we extend the concept
of dictionary replacement to space-variantly blurred images of 3D scenes where the blur
and depth are inter-related. As discussed in the following section, we elegantly exploit this
blur-depth dependency in our work to estimate the depth as well as a clean latent image.

3 Dictionary-based Depth Estimation and Deblurring
For a scene with varying depth, the blur experienced at each location is a function of depth.
In the case of a 3D scene and when camera motion is restricted to in-plane translations, the
objects closer to the camera experience larger motion when compared to the farther ones.
This gives rise to space-variant blurring. For motion blur, the blur magnitude is inversely
related to the depth from the camera center. In the case of defocus blur, if the object in the
front is focused, then the blur-depth relation is direct, i.e., blurring increases with depth. For
a far focused image, the relation is inverse. Our goal is to produce a clean all-focused image
irrespective of the nature of blur.

The blur variations with depth in the case of motion blur and defocus effect are depicted
in Fig. 3. The blur kernel at different depths are scaled versions of one another where the
scaling depends on depth values. Since dictionary-based reconstruction is a patch-wise op-
eration, we can effectively capture local changes within an image. We utilize this dictionary
localization to estimate the depth at each location, as discussed subsequently.

(a) (b) (c) (d)
Figure 3: Scaling of blur kernels with depth. (a-b) Motion blurred image and corresponding
kernel grid. (c-d) Defocused image and corresponding kernel grid.

Let Y be the observed blurred image of a 3D scene and h0 be the blur kernel correspond-
ing to the most blurred region in the image. From the blur-depth relation, we know that
the blur at any other position is a scaled down version of h0. Hence, the problem of depth
estimation boils down to estimating the scale of the blur kernel at each location. With the
underlying idea that for a given sparsity, the dictionary blurred with the correct scale will
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represent the blurred patch with minimum error, we formulate this as a Markov Random
Field (MRF) problem. We employ α-expansion graphcut [4, 5, 11] to solve for the scale at
each location by minimizing the following energy.

argmin
i

DCi(k)+ ∑
k′∈N

SC(īk′ , ik) (4)

where DCi(k) is the data cost of assigning scale i to the pixel position k and SC denotes the
smoothness cost. We assign an edge aware smoothness cost with value zero at the edges and
SC(ī, i) = (1− r|ī−i|) at other pixel locations where r is chosen as 0.8.

Given an initial kernel h0, we scale it using a range of values S ∈ {0,1} with a step-
size 0.1 to produce kernels hi’s which represent the blur at different scales. With these blur
kernels, we produce the blurred dictionary Dbi = hi⊗D from the pre-learned sparsifying
dictionary D(n×L). In our experiment, we design our dictionary with n =256 and L =1024.
The dictionary is trained on 16× 16 patches of sharp images from the dataset provided in
[7]. It is worth mentioning here that unlike [26], we do not learn the blurred dictionaries for
each blur kernel. The learning is done only once for the clear dictionary. All the blurred
dictionaries are produced from this dictionary D.

For a particular sparsity, the dictionary Dbi that gives the best representation (i.e., the
least error) for the blurred image Y at each patch is used to choose the correct scale at that
patch location. Thus, the data cost for assigning a scale i at pixel location k is formulated as

DCi(k) = ||Y (k)− Ȳi(k)||22 where Ȳi = Dbi ◦Λi (5)

where Ȳi is an approximation of Y obtained from the sparse representation (Λi) and the
blurred dictionary (Dbi) corresponding to blur kernel hi. Along with the data cost calculation,
the deblurred result corresponding to ith scale is estimated by dictionary replacement as
X̂i = D◦Λi.

It is to be noted that in the estimated X̂i, only the regions corresponding to blur level hi
will be restored properly. These deblurred results are stacked up in X. Once the graphcut
based scale is estimated for the entire image, the deblurred latent image X̄ is formed by
picking pixels from the stack X according to the scale. For a blurred image with two depth
layers in Fig. 4(a), the estimated blur map is shown in Fig. 4(b). Figs. 4(c-d) show the
deblurred results X̂i’s for the two scale values. S = 0.2 corresponds to background and S = 1
the foreground. The deblurred image (Fig. 4(c)) at scale 0.2 has the background intact, but
the leaf in the foreground is not recovered. The deblurred result at scale 1 (Fig. 4(d)) has
the leaf deblurred but the background has become over-deblurred. Hence, picking the pixels
corresponding to the blur map from these two deblurred results yields the final deblurred
result of Fig. 4(e).

(a) (b) (c) (d) (e)
Figure 4: Dictionary-based deblurring: (a) Input image. (b) Estimated blur map. (c-d)
Deblurred results corresponding to two different scales. (e) Estimated latent image.
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3.1 Initial kernel estimation
The above discussion assumes that the kernel h0 corresponding to the highly blurred region is
known. In the case of defocus or directional motion blur, the assumption of known kernel is
reasonable since, h0 can be well-approximated with a Gaussian or linear motion blur which
can be appropriately scaled to produce blur at different depth levels. However, in the case
of non-uniform blur, the initial kernel must be estimated since it can be of arbitrary shape.
Hence, we include a kernel estimation step prior to deblurring.

Given the blurred image, we first estimate a highly blurred region using singular value
features [21]. From this region, we pick a blurred patch Pb and estimate the kernel and the
corresponding latent patch P using conventional blind deblurring as

argmin
h,P

||Pb−h⊗P||22 +λ1||h||22 +λ2||∇P||1 (6)

The above problem being non-convex is solved using an iterative approach, wherein at each
iteration, one of the variables is fixed and the other is solved for. The estimated kernel h
using (6) corresponds to h0. This is then scaled down to produce the kernels at other depths.

3.2 Refinement of Latent Image
As discussed in Section 3, in our approach of dictionary-based deblurring, we pick pixels
from the stack of deblurred images, each corresponding to a single scale value. In doing so,
there is a possibility that when deblurring is carried out on the entire image with a single blur
kernel to produce X̂i’s, the patches that do not match with the blur will introduce artifacts.
This when averaged can result in reduction of quality at pixels that actually coincide with the
blur at that scale. Hence, picking the pixels from the stack can produce mild degradations.
To refine this result, we use the estimated deblurred image from dictionary learning (X̄) as a
prior for performing non-blind deblurring as

argmin
X

||MX−Y ||22 +λ ||X− X̄ ||22 + γ||∇X ||1 (7)

Here M is a large but sparse matrix representing space-variant blurring. Each row of M is de-
rived from the blur kernel at a pixel position which depends on the depth. We use alternating
direction method of multipliers (ADMM) [3] to solve for X in (7). The smootheness of the
recovered image is controlled by the value γ . High value of γ suppresses the edges and resul-
tant image will be oversmoothened and lower value leads to ringing artifacts. Similarly, the
value of λ decides how much details from the initial estimate of the latent image using dic-
tionary has to be retained. In our experiments, we choose γ to be in the range (0.002,0.008)
and λ to be in the range (0.025,0.05).

The complete algorithm of our proposed depth and latent image estimation from a single
space variantly blurred image is given in Algorithm 1.

4 Experimental Results
To validate the effectiveness of our proposed method, we conducted experiments for both
synthetic and real scenarios. In our experiments, we included space-variant blur caused by
defocus effect as well as motion blur. We also provide comparisons with other relevant
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Algorithm 1 : Dictionary based deblurring and depth estimation.
Input: Single motion blurred image Y .
Output: Depth map and latent image X .

1: Estimate an initial kernel h0 using (6).
2: for Each scale i ∈ S do
3: Produce blur kernel hi at scale level i from h0.
4: Form the blurred dictionaries Dbi = hi⊗D.
5: Evaluate the sparse representation Λi of Y in Dbi using (1).
6: Reproduce Y as Ȳi = Dbi ◦Λi.
7: Form the data term by stacking up the error ||Y − Ȳi||22.
8: Estimate latent image X̂i as X̂i = D◦Λi and place it in a stack X.
9: end for

10: Estimate the depth using graphcut.
11: Estimate the latent image X̄ by picking pixels from X according to the estimated depth.
12: Refine the output using (7).

methods. Codes used for all comparisons are downloaded from the corresponding author’s
web page. Additional results and comparisons are provided in the supplementary material.

We first discuss synthetic examples for the Middlebury dataset. We took four inputs, one
each from Bull, Poster, Sawtooth and Venus. These images were synthetically blurred using
(i) Gaussian defocus blur, and (ii) directional uniform motion blur in accordance with their
ground truth depth maps. In the case of defocus blur, we compared with dictionary-based
non-blind methods SRDB [28] and NCSR [6]. Since these methods are restricted to space-
invariant blur, deblurring the image with a single kernel introduces artifacts in the regions
where the blur does not correspond to the same blur. This results in a lower PSNR when
compared to our method as shown in Fig. 5(a). For non-blind space-invariant deblurring
methods, we deblurred using ground truth (GT) kernels at various scales separately. The
deblurred result with highest PSNR is used for comparison.

(a) (b)
Figure 5: Quantitative analysis for (a) defocus, and (b) motion blur.

For motion blur, we compared our method with dictionary-based NCSR [6] (non-blind),
Hu et al. [9] (blind) and natural prior-based [27] deblurring techniques. Both the dictionary-
based methods [6] and [9] handle only space-invariant blur and hence cannot deblur the
space-variantly blurred image using a single global blur kernel. The method of Xu et al. [27]
accommodates space-variant blur but cannot account for depth changes. In all the four sets
of images, our method delivers the best result and this is reflected in the PSNR values plotted
in Fig. 5(b). Due to space constraint, qualitative discussion of these results are given in the
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supplementary material.
Real Examples (Defocus blur): Fig. 6(a) shows an image of a 3D scene with the fore-

ground object blurred and background layer focused. The image was taken from the dataset
provided in [16]. Since the image is blurred due to defocus effect, we assume a Gaussian
kernel of size (15,15) and σ=3 as our initial kernel h0. We then form the data cost for the
graph-cut using scaled kernel dictionaries following steps 3 to 8 of Algorithm 1. Finally, the
blur map is estimated using graph-cut, and the corresponding latent image is formed and re-
fined using (7). The deblurred result and the estimated blur map using the proposed method
are given in Figs. 6(b) and (c).

We next demonstrate refocusing as an application of the proposed work. The input image
has the background in focus and the bottle in the foreground is blurred. From the estimated
depth and known kernel, we blurred the background such that the foreground blur now re-
verts to the background. The refocused image is shown in Fig. 6(d). Here the foreground is
clear and legible whereas the background appears blurred.

(a) (b) (c) (d)
Figure 6: Refocusing application: (a) Input image along with zoomed-in patches. (b) De-
blurred result. (c) Blur map. (d) Refocused image along with zoomed-in patches.

(a) (b) (c) (d)
Figure 7: Blur magnification: (a) Input image focused in the front. (b) Deblurred result. (c)
Estimated blur map. (d) Background blur magnified.

The next example on defocus blur shows an application of our method for blur magnifi-
cation to increase the aesthetics of an image. Specifically, the background is over-blurred to
bring out the beauty of the foreground. In Fig. 7(a), the input image already has blur in the
background. We deblur the image (Fig. 7(b)) and estimate the blur map (Fig. 7(c)). Using
this blur map, we create a trimap and segment out the foreground alone using alpha matting
[13]. The background is then subjected to high defocus blur, and the foreground is placed
back to get the blur-magnified image of Fig. 7(d). In the resultant image, the bird projects
out from the background.

Real examples (Motion blur): A real indoor example of a 3-layered scene taken with a
DSLR camera is shown in Fig. 8. The depth dependency of motion blur is clearly visible
from the input image of Fig. 8(a). The books in the front are heavily blurred when compared
to the textured wall in the rear end. The output latent image and the estimated depth using
our proposed algorithm are shown in Figs. 8(c) and (d), respectively. Fig. 8(b) shows the
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(a) (b) (c) (d)
Figure 8: (a) Blurred input image. Deblurred using (b) [27] and (c) our method. Zoomed-in
patches are also shown. (d) Estimated depth map.

result obtained from [27] which is not satisfactory since it does not handle depth variations.
It is quite clear from the zoomed-in patches that our method outperforms [27].

(a) (b) (c) (d)
Figure 9: Comparison with Hu et. al [10]: (a) Input image. (b) Deblurred result of [10]. (c)
Our result. (d) Zoomed-in patches from (a), (b) and (c), respectively.

The method in [10] addresses a similar problem of depth estimation and deblurring from
a single image based on segmentation. Since the code is not available, we ran our algorithm
on the image provided in that paper. The image in [10] has coloured boxes to indicate
patches. Hence, we cropped the portion without these boxes for testing. The cropped input
blurred image along with the result of [10] and our output are given in Fig. 9. Each row of
Fig. 9(d) corresponds to the respective zoomed-in patches from (a), (b) and (c). Even though
our final deblurring has introduced slight ringing at the borders, the overall deblurring is
better than that of [10]. The zoomed-in patches from the sign boards clearly reveal the
deblurring efficiency of our proposed method over [10].

(a) (b) (c) (d)
Figure 10: Object motion: (a) Blurred input image. (b) Our result. (c) Recovered blur map.
(d) Zoomed-in patches from (a) and (b), respectively.

We finally considered the case of blur due to object motion. As our method is local and
does not assume any global camera motion constraint, it performs well in these scenario too.
However, the object blur should be consistent throughout the blurred region. Consider the
example in Fig. 10. The input image is taken with a static camera and the blur is due to the
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moving foreground object alone. The estimated blur map here corresponds to the velocity of
the object in motion (rather than depth values). The deblurred output of our method is shown
in Fig. 10(b). The estimated scale can be further used for moving object segmentation.

4.1 Computational Complexity
Creating a clean dictionary D using K-SVD is a time consuming process. But this is done
apriori and no more learning is done in the entire algorithm. Hence this computation is only
a one time process. Apart from this the computations involved for each iteration are, L con-
volutions for creating the blurred dictionary Db, L correlations (computational complexity
of O(Ln)) with the input signal for finding the sparse representation of the image in Db, nL2

and n(L−1) scalar multiplication and additions to project back the sparse representation in
D to recover the clean patch. In addition to this, the graphcut framework using α expansion
to find the blur scale at each pixel position requires a computational time of O(m|S|) where
m is total image size and |S| is the number of scales. Run-time of our algorithm for an image
size 432× 432 using an unoptimized MATLAB code on a 3.6GHz PC with 16GB RAM is
around 156 seconds.

5 Conclusions
In this work, we addressed the challenging problem of deblurring a space-variantly blurred
image from a single observation. We exploited the concept of dictionary representation in the
blurred domain to estimate scaled kernels at each pixel location thereby arriving at the depth
map of the image. An impulse kernel dictionary reconstruction provided the underlying
clean latent image. Comparisons reveal that our method outperforms the state-of-the-art.
As future work, we plan to handle even rotational motion which would entail decoupling of
translation from rotation to exploit scaling of kernel as a function of depth.
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