
Blur-Invariant Deep Learning for Blind-Deblurring

T M Nimisha
ee13d037@ee.iitm.ac.in

Akash Kumar Singh
ee12b072@ee.iitm.ac.in

A N Rajagopalan
raju@ee.iitm.ac.in

Indian Institute of Technology, Madras, India

Abstract

In this paper, we investigate deep neural networks for
blind motion deblurring. Instead of regressing for the mo-
tion blur kernel and performing non-blind deblurring out-
side of the network (as most methods do), we propose a
compact and elegant end-to-end deblurring network. In-
spired by the data-driven sparse-coding approaches that
are capable of capturing linear dependencies in data, we
generalize this notion by embedding non-linearities into
the learning process. We propose a new architecture for
blind motion deblurring that consists of an autoencoder
that learns the data prior, and an adversarial network that
attempts to generate and discriminate between clean and
blurred features. Once the network is trained, the genera-
tor learns a blur-invariant data representation which when
fed through the decoder results in the final deblurred output.

1. Introduction
Motion blur is an inevitable phenomenon under long ex-

posure times. With mobile cameras becoming ubiquitous,
there is an increasing need to invert the blurring process to
recover a clean image. However, it is well-known that the
problem of blur inversion is quite ill-posed. Many meth-
ods exist [40] that rely on information from multiple frames
captured using video or burst mode and work by harnessing
the information from these frames to solve for the underly-
ing original (latent) image. Single image blind-deblurring
is considerably more challenging as the blur kernel as well
as the latent image must be estimated from just one obser-
vation. It is this problem that we attempt to solve here.

Early works [5, 27, 19] assumed space-invariant blur
and iteratively solved for the latent image and blur ker-
nel. Although these convolutional models are simple and
straight forward to analyze using FFTs, they fail to ac-
count for space-variant blur caused by non-linear camera
motion or dynamic objects or depth-varying scenes. Nev-
ertheless, even in such situations local patch-wise convolu-
tional model can be employed to achieve deblurring. In-
stead of using a patch-wise model, works such as [32, 15]

take the space-variant blur formation model itself into con-
sideration. But the deblurring process becomes highly ill-
posed as it must now estimate blur kernel at each pixel po-
sition along with the underlying image intensities. For pla-
nar scenes or under pure camera rotations, the methods in
[32, 10] circumvent this issue by modeling the global cam-
era motion using homographies.

Major efforts have also gone into designing priors that
are apt for the underlying clean image and the blur kernel
to regularize the inversion process and ensure convergence
during optimization. The most widely used priors are total
variational regularizer [4, 25], sparsity prior on image gradi-
ents, l1/l2 image regularization [17], the unnatural l0 prior
[37] and the very recent dark channel prior [23] for images.
Even though such prior-based optimization schemes have
shown promise, the extent to which a prior is able to per-
form under general conditions is questionable [17]. Some
priors (such as the sparsity prior on image gradient) even
tend to favor blurry results [19]. In a majority of situations,
the final result requires a judicious selection of the prior, its
weightage, as well as tuning of other parameters. Depend-
ing on the amount of blur, these values need to be adjusted
so as to strike the right balance between over-smoothing and
ringing in the final result. Such an effect is depicted in Fig.
1. Note that the results fluctuate with the weightage selected
for the prior. These results correspond to the method of [23]
with varying weights for dark channel prior (λ), l0 prior (µ)
and the TV prior (λTV ). Furthermore, these methods are
iterative and quite time-consuming.

Dictionary learning is a data-driven approach and has
shown good success for image restoration tasks such as de-
noising, super-resolution and deblurring [1, 39, 38]. Re-
search has shown that sparsity helps to capture higher-order
correlations in data, and sparse codes are well-suited for
natural images [20]. Lou et al. [38] have proposed a
dictionary replacement technique for deblurring of images
blurred with a Gaussian kernel of specific variance. The au-
thors of [33] adopt this concept to learn a pair of dictionar-
ies jointly from blurred as well as clean image patches with
the constraint that the sparse code be invariant to blur. They
were able to show results for space-invariant motion deblur-

1



(a) (b) (c) (d)

Figure 1: Effect of image prior. (a) Input blurred image. (b-d) Deblurred result using [23] with (λ = 0.04, µ = 0.007,
λTV = 0.001), (λ = 0.001, µ = 0.01, λTV = 0.01) and (λ = 0.004, µ = 0.005, λTV = 0.01), respectively.

ring but were again constrained to a single kernel. For mul-
tiple kernels, they learn different dictionaries and choose
the one for which the reconstruction error is the least. Even
though sparse coding models perform well in practice, they
share a shallow linear structure and hence are limited in
their ability to generalize to different types of blurs.

Recently, deep learning and generative networks have
made forays into computer vision and image processing,
and their influence and impact are growing rapidly by the
day. Neural networks gained in popularity with the intro-
duction of Alexnet [18] that showed a huge reduction in
classification error compared to traditional methods. Fol-
lowing this, many regression networks based on Convo-
lutional Neural Networks (CNNs) were proposed for im-
age restoration tasks. With increasing computational speeds
provided by GPUs, researchers are investigating deep net-
works for the problem of blur inversion as well. Xu et al.
[36] proposed a deep deconvolutional network for non-blind
single image deblurring (i.e, the kernel is fixed and known
apriori). Schuler et al. [26] came up with a neural architec-
ture that mimics traditional iterative deblurring approaches.
Chakrabarti [3] trained a patch-based neural network to es-
timate the kernel at each patch and employed a traditional
non-blind deblurring method in the final step to arrive at the
deblurred result. Since these methods estimate a single ker-
nel for the entire image, they work for the space-invariant
case alone. The most relevant work to handle space-variant
blur is a method based on CNN for patch-level classifica-
tion of the blur type [28], which focuses on estimating the
blur kernel at all locations from a single observation. They
parametrize the kernels (using length and angle) and esti-
mate these parameters at each patch using a trained net-
work. However, such a parametric model is too restrictive
to handle general camera motion blur.

The above-mentioned methods attempt to estimate the
blur kernel using a deep network but finally perform non-
blind deblurring exterior to the network to get the deblurred
result. Any error in the kernel estimate (due to poor edge
content, saturation or noise in the image) will impact de-
blurring quality. Moreover, the final non-blind deblurring
step typically assumes a prior (such as sparsity on the gra-

dient of latent image) which again necessitates a judicious
selection of prior weightage; else the deblurred result will
be imperfect as already discussed (Fig. 1). Hence, kernel-
free approaches are very much desirable.

In this work, we propose a deep network that can per-
form single image blind-deblurring without the cumber-
some need for prior modeling and regularization. The core
idea is to arrive at a blur-invariant representation learned
using deep networks that facilitates end-to-end deblurring.
Performance-wise, our method is at par with conventional
methods which use regularized optimization, and outper-
forms deep network-based methods. While conventional
methods can only handle specific types of space-variant blur
such as blur due to camera motion or object motion or scene
with depth variations, our network does not suffer from
these limitations. Most importantly, the run-time for our
method is very small compared to conventional methods.
The key strength of our network is that it does end-to-end
deblurring with performance quality at par or better than
competing methods while being computationally efficient.

2. Blur-invariant Feature Learning
It is well-known that most sensory data, including

natural images, can be described as a superposition of
small number of atoms such as edges and surfaces [20].
Dictionary-based methods exploit this information and
learn the atoms that can represent data in sparse forms for
various image restoration tasks (including deblurring). With
an added condition that these representations should be in-
variant to the blur content in the image, dictionary meth-
ods have performed deblurring by learning coupled dictio-
naries [33]. However, constrained by the fact that dictio-
naries can capture only linearities in the data and blurring
process involves non-linearities (high frequencies are sup-
pressed more), their deblurring performance does not gen-
eralize across blurs.

In this paper, we extend the notion of blur-invariant rep-
resentation to deep networks that can capture non-linearities
in the data. We are not the first one to approach deep learn-
ing as a generalization of dictionary learning for sparse cod-
ing. The work in [34] combines sparse coding and denois-



Decoder

Generator

Discriminator

Encoder

Figure 2: Illustration of our architecture.

ing encoders for the task of denoising and inpainiting. Deep
neural networks, in general, have yielded good improve-
ments over conventional methods for various low-level im-
age restoration problems including super-resolution [7], in-
painting and denoising [24, 34]. These networks are learned
end-to-end by exposing them to lots of example-data from
which the network learns the mapping to undo distortions.
We investigate the possibility of such a deep network for the
task of single image motion deblurring.

For blind-deblurring, we first require a good feature
representation that can capture image-domain information.
Autoencoders have shown great success in unsupervised
learning by encoding data to a compact form [12] which
can be used for classification tasks. This motivated us to
train an autoencoder on clean image patches for learning
the feature representation. Once a good representation is
learned for clean patches, the next step is to produce a blur-
invariant representation (as in [33]) from blurred data. We
propose to use a generative adversarial network (GAN) for
this purpose which involves training of a generator and dis-
criminator that attempt to compete with each other. The
purpose of the generator is to confuse the discriminator by
producing clean features from blurred data that are similar
to the ones produced by the autoencoder so as to achieve
blur-invariance. The discriminator, on the other hand, tries
to beat the generator by identifying the clean and blurred
features.

A schematic of our proposed architecture is shown in
Fig. 2. Akin to dictionary learning that represents any data
X as a sparse linear combination of dictionary atoms D i.e,
X = Dα, our encoder-decoder module performs this in
non-linear space. Hence, the encoder can be thought of as
an inverse dictionary D−1 that projects the incoming data
into a sparse representation. The decoder acts as the dic-
tionary D that reconstructs the input from the sparse repre-
sentation. Generator training can be treated as learning the
blur dictionary that can project the blurred data Y into the
same sparse representation of X i.e, α = D−1X = D−1b Y .

Once training is done, the input blurry image (Y ) is passed
through the generator to get a blur-invariant feature which
when projected to the decoder yields the deblurred result as
X̂ = Dα = DD−1b Y .

Thus, by associating the feature representation learned
by the autoencoder with GAN training, our model is able
to perform single image blind deblurring in an end-to-end
manner. Ours is a kernel-free approach and does away with
the tedious task of selecting priors, a serious bottleneck of
conventional methods. Unlike other deep learning methods,
our network directly regresses for the clean image.

The main contributions of our work are as follows :
• We propose a compact end-to-end regression network

that directly estimates the clean image from a single
blurred frame without the need for optimal prior selec-
tion and weighting, as well as blur kernel estimation.
• The proposed architecture is new and consists of an

autoencoder in conjunction with a generative network
for producing blur-invariant features to guide the de-
blurring process.
• Our method is computationally efficient and can re-

store both space-invariant and space-variant blur due
to camera motion.
• The network is even able to account for blur caused by

object motion/depth changes (to an extent) although it
was not trained explicitly for such a situation.

3. Network Architecture
Our network consists of an autoencoder that learns the

clean image domain and a generative adversarial network
that generates blur-invariant features. We train our network
in two stages. We first train an autoencoder to learn the
clean image manifold. This is followed by the training of
a generator that can produce clean features from a blurred
image which when fed to the decoder gives the deblurred
output. Note that instead of combining the task of data-
representation and deblurring into a single network, we rel-
egate the task of data-learning to the autoencoder and use
this information to guide image deblurring. Details of the
architecture and the training procedure are explained next.

3.1. Encoder-Decoder

Autoencoders were originally proposed for the purpose
of unsupervised learning [12] and have since been extended
to a variety of applications. An autoencoder projects the
input data into a low-dimensional space and recovers the
input from this representation. When not modeled properly,
it is likely that the autoencoder learns to just compress the
data without learning any useful representation. Denoising
encoders [30] were proposed to overcome this issue by cor-
rupting the data with noise and letting the network undo this
effect and get back a clean output. This ensures that the au-
toencoder learns to correctly represent clean data. Deepak



Figure 3: Autoencoder architecture with residual networks.

et al. [24] extended this idea from mere data representation
to context representation for the task of inpainiting. In ef-
fect, it learns a meaningful representation that can capture
domain information of data.

We investigated different architectures for the autoen-
coder and observed that including residual blocks (ResNet)
[11] helped in achieving faster convergence and in improv-
ing the reconstructed output. Residual blocks help by by-
passing the higher-level features to the output while avoid-
ing the gradient vanishing problem. The training data was
corrupted with noise (30% of the time) to ensure encoder
reliability and to avoid learning an identity map. The ar-
chitecture used in our paper along with the ResNet block is
shown in Fig. 3. A detailed description of the filter and fea-
ture map sizes along with the stride values used are as given
below.
Encoder: C5

3→8 ↓ 2 → R
5(2)
8 → C5

8→16 ↓ 2 → R
5(2)
16 →

C3
16→32 ↓ 2→ R3

32

Decoder: R3
32 → C2

32→16 ↑ 2 → R
5(2)
16 → C4

16→8 ↑ 2 →
R

5(2)
8 → C4

8→3 ↑ 2
where Cc

a→b ↓ d represents convolution mapping from a
feature dimension of a to b with a stride of d and filter
size of c, ↓ represents down-convolution, ↑ stands for up-
convolution, and Rb(c)

a represents the residual block which
consists of a convolution and a ReLU block with output fea-
ture size a, filter size b, and c represents the number of rep-
etitions of residual blocks.

Fig. 4 shows the advantage of the ResNet block. Fig.
4(a) is the target image and Figs. 4(c) and (d) are the out-
put of autoencoders with and without ResNet block for the
same number of iterations for the input noisy image in Fig.
4(b). Note that the one with ResNet converges faster and
preserves the edges due to skip connections that pass on the
information to deeper layers.

(a) (b) 26.1 dB (c) 29.5 dB (d) 23.1 dB

Figure 4: Effect of ResNet on reconstruction. (a) The tar-
get image. (b) Noisy input to the encoder-decoder module.
(c) Result of encoder-decoder module of Fig. 3. (d) Result
obtained by removing ResNet for the same number of iter-
ations. PSNR values are given under the respective figures.
(Enlarge for better viewing).

3.2. GAN for feature mapping

The second stage of training constitutes learning a gen-
erator that can map from blurred image to clean features.
For this purpose, we used a generative adversarial network.
GANs were first introduced by Goodfellow [9] in 2014.
Since then, they have been widely used for various image
related tasks. GANs consists of two models: a Genera-
tor (G) and a Discriminator (D) which play a two-player
mini-max game. D tries to discriminate between the sam-
ples generated by G and training data samples, while G tries
to fool the discriminator by generating samples close to the
actual data distribution. The mini-max cost function [9] for
training GANs is given by

min
G

max
D

C(G,D)
= Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z))]

whereD(x) is the probability assigned by the discriminator
to the input x for discriminating x as a real sample. Pdata

and Pz are the respective probability distributions of data x
and the input random vector z. The main goal of [9] is to
generate a class of natural images from z.

GANs that just accept random noise and attempt to
model the probability distribution of data over noise are dif-
ficult to train. Sometimes their instability leads to artifacts
in the generated image. Hence, instead of a vanila network
for GAN, we used conditional GAN which was introduced
by Mirza et al. [22] and which enables GANs to accomo-
date extra information in the form of a conditional input.
The inclusion of adversarial cost in the loss function has
shown great promise [24], [14]. Training conditional GANs
is a lot more stable than unconditional GANs due to the ad-
ditional guiding input. The modified cost function [14] is
given by

min
G

max
D

Ccond(G,D) = Ex,y∼Pdata(x,y)[logD(x, y)]

+ Ex∼Pdata(x),z∼Pz(z)[log(1−D(x,G(x, z))] (1)

where y is the clean target feature, x is the conditional im-
age (the blurred input), and z is the input random vector.



(a) (b) (c)

Figure 5: Effect of direct regression using generative net-
works. (a) Input blurred image. (b-c) Output of the network
and the expected output.

In conditional GANs, the generator tries to model the dis-
tribution of data over the joint probability distribution of x
and z. When trained without z for our task, the network
learns a mapping for x to a deterministic output y which is
the corresponding clean feature.

[14] proposes an end-to-end network using a generative
model to perform image-to-image translation that can be
used in multiple tasks. Following this recent trend, we ini-
tially attempted regressing directly to the clear pixels using
off-the-shelf generative networks. However, we observed
that this can lead to erroneous results as shown in Fig. 5.
The main reason for this could be that the network becomes
unstable when trained on higher-dimensional data. Also
GANs are quite challenging to train and have mainly shown
results for specific class of images. When trained for large
diverse datasets, training does not converge [31]. Hence,
we used the apriori-learned features of the autoencoder for
training GAN.

Training a perfect discriminator requires it’s weights to
be updated simultaneously along with the generator such
that it is able to discriminate between the generated sam-
ples and data samples. This task becomes easy and viable
for the discriminator in the feature space for two reasons:
i) In this space, the distance between blurred features and
clean features is higher as compared to the image space.
This helps in faster training in the initial stage.
ii) The dimensionality of the feature-space is much lower
as compared to that of image-space. GANs are known
to be quite effective in matching distributions in lower-
dimensional spaces [6].

We train GAN using normal procedure but instead of
asking the discriminator to discern between generated im-
ages and clean images, we ask it to discriminate between
their corresponding features. The generator and the dis-
criminator architectures are as given below.
Generator: C5

3→8 ↓ 2→ R
5(2)
8 → C5

8→16 ↓ 2→ R
5(2)
16 →

C3
16→32 ↓ 2 → R

5(2)
32 → C3

32→128 ↓ 2 → R
3(2)
128 →

C3
128→32 ↑ 2

Discriminator: C5
32→32 → C5

32→32 ↓ 2 → C5
32→16 →

C5
16→16 ↓ 2→ C5

16→8 → C3
8→8 ↓ 2→ C3

8→1

Each convolution is followed by a Leaky ReLU and batch-
normalization in the discriminator, and ReLU and batch-
normalization in the generator.

Once the second stage is trained, we have a generator
module to which we pass the blurred input during the test
phase. The generator produces features which correspond
to clean image features which when passed through the de-
coder deliver the final deblurred result. It may be noted that
our network is compact with 34 convolutional layers (gen-
erator and decoder put together) despite performing end-to-
end deblurring.

3.3. Loss function

We trained our network using the following loss func-
tions. For autoencoder training, we used Lmse + λLgrad.
Adding the gradient-loss helps in preserving edges and re-
covering sharp images as compared to Lmse alone. We use
normalized l2 distance on the expected and observed image
as our loss function i.e.

Lmse = ‖De(E(I +N ))− I‖22 (2)

where De is the decoder, E the encoder, N is noise and I
is the target (clean) image. The MSE error captures overall
image content but tends to prefer a blurry solution. Hence,
training only with MSE loss results in loss of edge details.
To overcome this, we used gradient loss as it favours edges
as discussed in [21] for video-prediction.

Lgrad = ‖∇De(E(I +N ))−∇I‖22 (3)

where∇ is the gradient operator.
GAN is trained with the combined cost given by

λadvLadv + λ1Labs + λ2Lmse in the image and feature
space. Even though l2 loss is simple and easy to back-
propagate, it under performs on sparse data. Hence, we used
l1 loss for feature back-propagation i.e.

Labs = ‖G(B)− E(I)‖1 (4)

where B is the blurred image. The adversarial loss function
Ladv (given in Eq. (1)) requires that the samples output by
the generator should be indistinguishable to the discrimina-
tor. This is a strong condition and forces the generator to
produce samples that are close to the underlying data dis-
tribution. As a result, the generator outputs features that
are close to the clean feature samples. Another advantage
of this loss is that it helps in faster training (especially dur-
ing the initial stages) as it provides strong gradients. Apart
from adversarial and l1 cost on the feature space, we also
used MSE cost on the recovered clean image after passing
the generated features through the decoder. This helps in
fine-tuning the generator to match with the decoder. Fig.
2 shows the direction of error back-propagation along with
the network modules.



Dataset [29] Xu & Jia [35] Xu [37] Pan [23] Whyte et al. [32] Ours
PSNR 28.21 28.11 31.16 26.335 30.54

MSSIM 0.9226 0.9177 0.9623 0.8528 0.9553

Table 1: Average quantitative performance on the dataset [29].

(a) Input (b) [35] (c) [23] (d) Ours

Figure 6: Comparisons for space-invariant deblurring. (a) Input blurred image. (b-c) Deblurred output using methods in [35]
and [23], respectively. (d) Our result.

Method Run time
Ours (Torch, GPU/CPU) 3.4 sec/2 min

Xu & Jia [35] (Executable) 3 min (800 × 600 pixels)
Xu [37] (Matlab, CPU) 34 sec
Pan [23] (Matlab, CPU) 40 min

Whyte [32] (Matlab, CPU) 4 min

Table 2: Run-time for each method for average image size
of 1024 × 700.

3.4. Training

We trained our autoencoder using clean patches of size
128 × 128 from the Pascal VOC 2012 dataset [8]. The in-
puts were randomly corrupted with Gaussian noise (stan-
dard deviation = 0.2) 30% of the time to ensure learning
of useful data representation. For learning, we used Adam
[16] with an initial learning rate of 0.0002 and momentum
0.9 with batch-size of 8. The training took around 105 iter-
ations to converge. The gradient cost was scaled by λ = 0.1
to ensure that the final results are not over-sharpened.

The second stage of training involved learning a blur-
invariant representation from blurred data. For creating the
blurred data, we used around 105 kernels generated using
the code provided by Chakrabarthi et al. [3]. The input
images from PASCAL dataset were blurred using these ker-
nels and patches of size 128 × 128 were extracted. Around
35 × 105 training data was used to train the generator-
discriminator pair. The Adam optimizer with initial setting
as before was used with a batch-size of 16. To improve
GAN stability, we also used smooth labeling of blur and
clean features as discussed in [2]. For around 2 × 105 iter-

ations, the training was done with feature costs alone with
λadv = 0.01 and λ1 = 1. Fine tuning of the generator was
subsequently done by adding the MSE cost and weighing
down the adversarial cost (λ2 = 1, λ1 = 1 and λadv = 0.001).

4. Experiments
We evaluated the efficacy of our network for deblurring,

both quantitatively and qualitatively. We also compared
performance with conventional as well as deep networks.
For conventional methods, we selected the very recent dark
channel prior of [23], l0 unnatural prior by Xu et al. [37],
deblurring method of Whyte et al. [32] and the two-phase
kernel method of Xu & Jia [35]. Codes were downloaded
from the authors’ websites. We also did comparisons with
deep learning-based approaches [3] and [28]. In addition to
the above, we also tested on images affected by object mo-
tion and compared our results with the generalized video
deblurring method of [13].

4.1. Comparisons with Conventional Methods

Quantitative evaluation: We performed quantitative
comparisons of our method with state-of-the-art methods
[23, 37, 32, 35] on the dataset of [29]. The dataset consists
of 80 images and 8 kernels totaling to 640 images each
of size 1024 × 700 (on average). The average PSNR
and MSSIM (Mean SSIM) measures obtained on each of
these images is provided in Table 1. It can be observed
from the quantitative measures in Table 1 that our method
performs at par with the state-of-the-art. Importantly, our
method offers a significant advantage in terms of run-time.
The images tested here had an average size of 1024 ×



(a) Input (b) [37] (c) [32] (d) [23] (e) Ours

Figure 7: Examples for space-variant deblurring and comparisons with conventional state-of-the-art methods. (a) Input
blurred image. (b-e) Results obtained by the methods in [37, 32, 23] and our result, respectively.

(a) Input (b) Ours (c) Network output of [3] (d) Final output of [3]

Figure 8: Comparison with [3]. (a) Input blurred image. (b) Output of our network. (c-d) Network output and final non-blind
deblurred output of [3].

700 and we have reported the run-time for each method
(run on Intel I-7 3.4GHz CPU with 8 cores) in Table
2. Note that our method implemented in Torch and run
using a Titan-X GPU is at least an order faster than the
fastest competitive method [37]. The CPU runtime of our
method is 2 minutes which is still faster than most of the
comparative methods. Traditional methods are sequential
in nature with kernel and image estimated in an alternating
fashion. This inherently limits the extent to which they can
utilize the parallel processing capability of GPU. Even a
GPU re-implementation of these methods will not provide
much time savings.

Qualitative evaluation: Figs. 6 and 7 provide qualitative
performance of our network compared to conventional
methods on space-invariant and space-variant blur, respec-

tively. The results in Fig. 6 clearly reveal that our method
(Fig. 6(d)) produces results devoid of any ringing artifacts
when compared to [35] and [23]. The butterfly’s wing and
the lady’s collar look sharp and clear. Though the result in
Fig. 6(c) also appears to be sharp, there is ringing at the
boundaries. The same issue is present in Fig. 6(b) as well.

The efficacy of our method to deal with space-variant
blur due to non-uniform camera motion is given in Fig. 7.
Here, the input images (first column) are affected by differ-
ent blurs at different locations. We compared our method
with that of [37, 32, 23]. It can be clearly observed that our
method outperforms all others. The zoomed-in patch of the
bag in the second row as well as the bottle in the fourth row
are quite clear and sharp in our result (Fig. 7(e)), in com-
parison with other outputs. It has to be noted here that we
ran all the comparisons using the default settings provided



(a) Input (b) [28] (c) Ours

Figure 9: Comparison with [28]. (a) Space-variantly blurred
input images. (b) Result of [28] and (c) our result.

(a) Input (b) [13] (c) Ours

Figure 10: Object motion deblurring. (a) Input. (b) Deblurred
result of [13], and (c) our output.

by the authors in their codes. The result of these methods
could perhaps improve with parameter tuning (although the
’subway’ comparison results are taken directly from [23]);
but as already explained in section 1, this is very cumber-
some exercise; more so, given the fact that the run-time for
the competing methods is quite high. In stark contrast, our
method elegantly avoids these pitfalls.

4.2. Comparisons with Deep networks

We also compared our deblurring results with that of [3]
and [28]. These are deep network-based approaches but per-
form the task of kernel estimation. The deblurred results for
these methods are obtained by using a non-blind deblurring
scheme in the final step. For comparisons with [3] (shown
in Fig. 8), we ran our network on the images provided in
their paper. The results are compared here with the network
output of [3] (Fig. 8(c)) and the final output (Fig. 8(d)) ob-
tained post non-blind deblurring. It must be noted here that
our network output (Fig. 8(b)) is significantly better than
the network output of Fig. 8(c). Moreover, the method [3]
can only handle space-invariant blur.

We also compared our network with [28] that performs
parametrized estimation of space-variant blur using deep
networks and then uses a conventional method for deblur-
ring. We again ran our network on the images provided by
the authors in their paper (Fig. 9 (a)). Note that our model
produces results (Fig. 9(c)) that are comparable to that pro-
duced by final deblurring in [28] (Fig. 9(b)). The zoomed-in
patches of the man and the woman’s face in the second row
as well as the masked man’s face and reporter’s hands in the
forth row are much sharper in our result.

4.3. Object Motion Deblurring

We also tested on images with blur due to object motion
and observed that our network is able to handle even such
cases to a resonable extent although it was not trained with
such examples. In contrast, conventional deblurring meth-
ods [23, 37, 32, 35] that model blur due to camera motion
(alone) cannot handle blur due to object motion. Fig. 10 de-
picts examples of object motion deblurring where the inputs
in Fig. 10(a) have blur in the background due to camera
motion while the foreground (which is at a differnt depth
from the background) incurs blur due to object as well as
camera motion. We compared our results (Fig. 10(c)) with
the video-based dynamic scene deblurring method of [13]
(Fig. 10(b)). The results reveal that our method (Fig. 10(c))
(although single image based) is able to perform at par with
the video-based method that uses information from multiple
frames.

Additional results and comparisons are provided in the
supplementary material.

5. Conclusions
In this paper, we proposed an end-to-end deep network

for single image blind-deblurring using autoencoder and
GAN. Instead of directly regressing for clean pixels, we
perform regression over encoder-features to arrive at a blur-
invariant representation which when passed through the de-
coder produces the desired clean output. Our network is
kernel-free, does not require any prior modeling, and can
handle both space-invariant and space-variant blur. When
evaluated on standard datasets as well as on our own exam-
ples, our network performs at par or even better than com-
peting methods while being faster by at least an order.



References
[1] M. Aharon, M. Elad, and A. Bruckstein. rmk-svd:

An algorithm for designing overcomplete dictionaries for
sparse representation. Transactions on signal processing,
54(11):4311–4322, 2006. 1

[2] M. Arjovsky and L. Bottou. Towards principled methods
for training generative adversarial networks. In NIPS 2016
Workshop on Adversarial Training, volume 2016, 2017. 6

[3] A. Chakrabarti. A neural approach to blind motion deblur-
ring. In ECCV, pages 221–235. Springer, 2016. 2, 6, 7, 8

[4] T. F. Chan and C.-K. Wong. Total variation blind deconvolu-
tion. TIP, 7(3):370–375, 1998. 1

[5] S. Cho and S. Lee. Fast motion deblurring. In TOG, vol-
ume 28, page 145. ACM, 2009. 1

[6] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial fea-
ture learning. In ICLR, 2017. 5

[7] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-
resolution using deep convolutional networks. TPAMI,
38(2):295–307, 2016. 3

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.
6

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In NIPS, pages 2672–2680, 2014. 4

[10] A. Gupta, N. Joshi, L. Zitnick, M. Cohen, and B. Curless.
Single image deblurring using motion density functions. In
ECCV, 2010. 1

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016. 4

[12] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. science,
313(5786):504–507, 2006. 3

[13] T. Hyun Kim and K. Mu Lee. Generalized video deblurring
for dynamic scenes. In CVPR, pages 5426–5434, 2015. 6, 8

[14] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial networks.
arXiv preprint arXiv:1611.07004, 2016. 4, 5

[15] N. Joshi, R. Szeliski, and D. J. Kriegman. Psf estimation
using sharp edge prediction. In CVPR, pages 1–8. IEEE,
2008. 1

[16] D. Kingma and J. B. Adam. A method for stochastic optimi-
sation. In ICLR. ICLR, 2015. 6

[17] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution
using a normalized sparsity measure. In CVPR, pages 233–
240. IEEE, 2011. 1

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, pages 1097–1105, 2012. 2

[19] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman.
Understanding blind deconvolution algorithms. TPAMI,
33(12):2354–2367, 2011. 1

[20] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. R. Bach.
Supervised dictionary learning. In Advances in NIPS, pages
1033–1040, 2009. 1, 2

[21] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale
video prediction beyond mean square error. arXiv preprint
arXiv:1511.05440, 2015. 5

[22] M. Mirza and S. Osindero. Conditional generative adversar-
ial nets. arXiv preprint arXiv:1411.1784, 2014. 4

[23] J. Pan, D. Sun, H. Pfister, and M.-H. Yang. Blind image
deblurring using dark channel prior. In CVPR, pages 1628–
1636, 2016. 1, 2, 6, 7, 8

[24] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.
Efros. Context encoders: Feature learning by inpainting. In
CVPR, pages 2536–2544, 2016. 3, 4

[25] D. Perrone and P. Favaro. Total variation blind deconvolu-
tion: The devil is in the details. In CVPR, pages 2909–2916,
2014. 1

[26] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf.
Learning to deblur. In NIPS, 2014. 2

[27] Q. Shan, J. Jia, and A. Agarwala. High-quality motion de-
blurring from a single image. In TOG, volume 27, page 73.
ACM, 2008. 1

[28] J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolu-
tional neural network for non-uniform motion blur removal.
In CVPR, pages 769–777. IEEE, 2015. 2, 6, 8

[29] L. Sun, S. Cho, J. Wang, and J. Hays. Edge-based blur kernel
estimation using patch priors. In ICCP, pages 1–8. IEEE,
2013. 6

[30] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising au-
toencoders. In Proceedings of the 25th iICML, pages 1096–
1103. ACM, 2008. 3

[31] D. Warde-Farley and Y. Bengio. Improving generative adver-
sarial networks with denoising feature matching. In ICLR.
ICLR, 2017. 5

[32] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Non-uniform
deblurring for shaken images. IJCV, 98(2):168–186, 2012.
1, 6, 7, 8

[33] S. Xiang, G. Meng, Y. Wang, C. Pan, and C. Zhang. Image
deblurring with coupled dictionary learning. IJCV, 114(2-
3):248–271, 2015. 1, 2, 3

[34] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting
with deep neural networks. In NIPS, pages 341–349, 2012.
2, 3

[35] L. Xu and J. Jia. Two-phase kernel estimation for robust mo-
tion deblurring. In ECCV, pages 157–170. Springer, 2010.
6, 7, 8

[36] L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional neu-
ral network for image deconvolution. In NIPS, pages 1790–
1798, 2014. 2

[37] L. Xu, S. Zheng, and J. Jia. Unnatural l0 sparse represen-
tation for natural image deblurring. In CVPR, pages 1107–
1114, 2013. 1, 6, 7, 8

[38] A. B. Y Lou and S. Soatto. Direct sparse deblurring. In
Technical Report, CAM-UCLA, 2009. 1

[39] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-
resolution via sparse representation. TIP, 19(11):2861–2873,
2010. 1

[40] H. Zhang and L. Carin. Multi-shot imaging: joint alignment,
deblurring and resolution-enhancement. In CVPR, pages
2925–2932, 2014. 1


