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ABSTRACT
Light scattering and color distortions are two major issues
with underwater imaging. Scattering occurs due to turbidity
of the medium and color distortions are caused by differen-
tial attenuation of wavelengths as a function of depth. As
a result, underwater images taken in a turbid medium have
low contrast, color cast, and color loss. The main objective
of this work is color restoration of underwater images i.e,
produce its equivalent image as seen outside of the water
surface. As a first step, we account for low contrast by em-
ploying dark channel prior based dehazing. These images
are then color corrected by learning a mapping function be-
tween a pair of color chart images, one taken inside water
and another taken outside. The mapping thus learned is
with respect to a reference distance from the water surface.
We also propose a color modulation scheme that is applied
prior to color mapping to accommodate the same mapping
function for different depths as well. Color restoration re-
sults are given on several images to validate the efficacy of
the proposed methodology.

CCS Concepts
•Computing methodologies → Image processing;

Keywords
Color mapping, color modulation, white balancing, boost-
ing, dehazing.

1. INTRODUCTION
Understanding and investigating underwater activities us-

ing images has been gaining popularity over the past few
years. Classical image processing tools fail in underwater
scenarios due to variations in optical properties of water.
Water being dense, light gets attenuated and scatters more
as compared to its transport in air. These effects are directly
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responsible for image degradations in the form of blur, con-
trast loss, color cast and color loss.

Scattering is caused either due to suspended particles or
due to turbidity in the medium. This induces color cast and
haze to the captured images. Attenuation occurs due to ab-
sorption of light rays, as they travel through a medium. Dif-
ferent wavelengths of light get attenuated differently in wa-
ter and hence the light reflected from the object inside water
has different attenuation factors across the visible spectrum.
Red undergoes severe attenuation followed by green, while
blue is the least attenuated and penetrates the most. The
net result is color loss. True color plays a very important
role while analyzing specimens found in water. In this paper,
we initially mitigate the effect of color cast and haze, and
proceed to develop an approach for color correction which
compensates for color loss in underwater images.

Several methods already exist for color correction of ter-
estrial images. These include intensity normalization [7],
radiometric correction [17], white-balancing to a canonical
illumination, and color correction [20]. A detailed survey on
different color balancing techniques can be found in [10].
However, these methods fail to deliver good results on un-
derwater images if employed as is. Methods has been devel-
oped in the literature that are specifically tailored to handle
underwater degradations. In the literature, three types of
approaches are prevalent for color correction of underwater
images captured in turbid scenarios. These are enhancement
based, dehazing based and sensor based.

Inspired by color and lightness constancy mechanisms of
the human visual system, Chambah et al. [4] proposed an
automatic color equalization approach to balance colors in
underwater images. Luz et al. [21] proposed an MRF based
approach where the color correction is considered as a task
of assigning color to each node in the graph which best de-
scribes the surroundings. The parameters of MRF model
are learnt from an image pair consisting of color corrected
and color depleted patches. Bazeille et al. [2] use a se-
ries of image enhancement filters to improve edge visibil-
ity and contrast. Color restoration is done through linear
translation of the histogram. Iqbal et al. [12] propose a
two-stage approach consisting of histogram equalization of
RGB channels followed by stretching of saturation and in-
tensity channels of HSI to increase true color and to solve
the lightness problem. Marine snow limits the performance
of conventional color correction algorithms due to its shiny
appearance. Boffety et al. [3] propose a modified histogram



(a) Input (b) Color boosted

(c) Color mapped (d) White balanced

Figure 1: Proposed method: The input image (a)
is first dehazed and then subjected to color modu-
lation (b) and color mapping (c) followed by white
balancing (d) to restore the lost colors.

stretching method which can restore the color of underwater
images in the presence of snow.

Images captured in haze or fog experience severe contrast
loss. Based on the nature of water and particulates in wa-
ter, the light gets scattered and results in color cast. Hence,
modeling of color cast can be done akin to atmospheric haze
and the dark channel prior has been advocated for restoring
the images. Among such dehazing based approach, Lu et al.
[15] proposed a spectral-characteristic based color correction
algorithm to recover the distorted color. Based on the fact
that different wavelengths get attenuated differently inside
water, Chiang et al. [5] proposed a wavelength compensa-
tion and dehazing technique to restore color as well as illu-
mination. Fahimeh et al. [9] employs dictionary learning for
underwater images. However, they use dictionary mainly for
removing blurring artifacts and perform color cast removal
using a modified version of the gray world algorithm. Li et
al. [14] performs dehazing and red channel correction (using
gray world assumption). While we also handle color cast,
our main focus is color correction which involves taking into
account depth-dependent wavelength attenuation.

Most of the ocean expeditions are performed by using re-
motely operated vehicles which are fitted with depth sen-
sors [18] [19] [1]. True color correction can be done only if
we know the absolute depth. Hence, approaches that em-
ploy depth sensors are more accurate than enhancement and
dehazing based techniques. Kaeli et al. [13] propose a tech-
nique which compensates for the color by using the depth
information from doppler velocity log as well as estimating
attenuation coefficients of light in water. Vasilescu et al.
[22] built a hardware which can compensate for color loss
based on the measured distance.

In this paper, we propose a framework for restoration of
colors in turbid underwater imagery. We propose a learning
based technique in which we learn a mapping between a pair
of images for a reference depth. The image pair consists of
a color chart taken under the water surface and its corre-
sponding pair taken outside water surface. Visibility loss
due to turbidity is accounted for by dehazing using dark

Figure 2: Underwater image formation.

channel prior. The dehazed image is further color corrected
using the learned mapping. When there are depth changes
from the reference, a color modulation technique is applied
prior to color mapping to match the reference depth. In
Fig. 1, the input image in (a) was captured at a depth dif-
ferent from the reference depth. Hence it is subjected to
color modulation (b) prior to applying color correction (c)
and white balancing (d). In the final result (Fig. 1(d)), the
bluish tint is removed (when compared to the input) and
colors properly restored.

Our main contributions are as follows

• We perform color correction of underwater images taken
in turbid medium. Post correction, the recovered col-
ors resemble their equivalent outside the water surface.

• We achieve the above by learning a color mapping be-
tween colors of a color chart taken inside and outside
water. The mapping is learned for a reference depth.

• To accommodate different depths, we propose a color
modulation scheme that is applied prior to color map-
ping.

• Our approach is the first of its kind to use color map-
ping for color correction in turbid water.

In Section 2, we describe underwater image formation. The
proposed mapping based color correction scheme is discussed
in Section 3. This is followed by quantitative and qualitative
results in Section 4. We conclude with Section 5.

2. IMAGE FORMATION
In this section, we will briefly discuss the underwater im-

age formation model used in this work. Fig 2 gives an illus-
tration of the model. Throughout our discussions, we shall
assume ambient light source alone. The effect of any ex-
ternal illuminant is not incorporated into the model. The
image formation models in [8], [6] consider the effect of light
scattering during the course of propagation from water sur-
face to the object as well as from the object to the camera.
A light beam with energy EAλ gets attenuated with respect
to the distance D traveled from the water surface to the ob-
ject surface. This attenuated ray is reflected from the object
surface based on the surface reflectivity ρ of the object as
EAλ (x)Nrer(λ)D(x)ρλ(x). This reflected light has to cover a
distance of d to the camera during which it encounters atten-
uation again. The image will further get affected by water



Figure 3: Flowchart of proposed method.

turbidity. The scattering of light increases with turbidity
leading to haze in the captured images. Haze is a bottle-
neck as it reduces visibility and results in low contrast. The
observed image I at a pixel location x is modeled as

Iλ(x) = (EAλ (x)Nrer(λ)D(x)ρλ(x))Nrer(λ)d(x)

+(1−Nrer(λ)d(x))Aλ
(1)

where λ ∈ {R,G,B}, Nrer(λ) is the attenuation factor (nor-
malized energy ratio) encountered at different wavelengths
and Aλ is the homogeneous background light. This can be
equated to the hazy image formation model in [11] given by

Iλ(x) = Jλ(x)tλ(x) + (1− tλ(x))Aλ (2)

where Jλ(x) is the scene radiance at point x and tλ(x) is
the residual energy ratio of Jλ(x) reaching the camera after
reflecting from the point x. From Eq. (1) and (2) it can
be noted that tλ(x) is a function of both wavelength and
the object to camera distance d(x) and it can be written in
terms of the attenuation factor Nrer(λ) as

tλ(x) = e−βλd(x)

= Nrer(λ)d(x)
(3)

where βλ is the attenuation coefficient corresponding to each
wavelength. Based on the water type, the normalized energy
ratio Nrer(λ) can be given as

Nrer(λ) = 0.83 ∼ 0.85 if λ ∈ R
= 0.93 ∼ 0.97 if λ ∈ G
= 0.95 ∼ 0.99 if λ ∈ B

3. MAPPING FOR COLOR CORRECTION
We propose here a mapping based method for color restora-

tion of underwater images. The learning is done only once
for a pair of color charts corresponding to underwater image
at reference depth D0. When the incoming image is from
the same reference depth, it is first subjected to dehazing
to remove the scattering effects. The dehazed image is then
color corrected using color mapping. White balancing is per-
formed on the color mapped image in order to remove any
remaining color casts. If the input underwater image is from
a different depth D (6= D0), it is color modulated to the ref-
erence depth D0 prior to color mapping. A flowchart of the
proposed method is shown in Fig. 3. The steps involved in
the process are explained below in detail.

3.1 Dehazing and depth estimation
Classical approaches on depth estimation from an image

pair work by utilizing cues such as parallax, blur etc. In hazy
environments, haze is directly proportional to depth, and

(a) (b)

(c)

Figure 4: Result of dehazing: (a) Input image af-
fected by haze and color distortions. (b) Estimated
depth d(x). (c) Result of dehazing.

hence can itself be used as a cue for depth. The dark channel
prior (DCP) [11], can adequately quantify the concentration
of haze in terrestrial images and has been used to infer scene
depth in hazy environments. It is based on the central idea
that in most non-sky patches, at least one color channel has
very low intensity. The assumptions made in DCP are valid
for underwater images as well i.e; at least one color channel
has pixel intensity close to zero. DCP has been widely used
in dehazing of underwater images too [6], [16].

The reflected light from a point x is given as

Jλ(x) = EAλ (x)Nrer(λ)D(x)ρλ(x)

=
Iλ(x)− (1−Nrer(λ)d(x))Aλ

Nrer(λ)d(x)

(4)

Now the dark channel for an underwater image can be de-
fined as

Jdark(x) = min
λ

min
y∈Ω(x)

Jλ(y) (5)

where Ω(x) is a patch around the pixel x. As per dark chan-
nel prior, the assumption holds that at least one channel has
intensity close to zero and that channel is the dark channel.
Hence, Jdark(x) ≈ 0. Taking the min operation in local
patches on the observed image in Eq. (1) gives

min
y∈Ω(x)

Iλ(y) = min
y∈Ω(x)

Jλ(y)Nrer(λ)d(y) +(1−Nrer(λ)d(y))Aλ

(6)

For a local patch around x, Nrer(λ)d(y) is a constant and
is approximately equal to that at x. Taking one more min
operation with respect to λ on both sides gives

min
λ

min
y∈Ω(x)

Iλ(y) = Jdark(x)Nrer(λ)d(x)+

min
λ

(1−Nrer(λ)d(x))Aλ
(7)

The first term in the RHS is approximately zero (due to
DCP) and the above equation can be rearranged as

min
λ

(Nrer(λ)d(x)) = 1−min
λ

(
miny∈Ω(x) Iλ(y)

Aλ

)
(8)

The homogeneous background light refers to the brightest
pixel intensity in the image. But this might go wrong in the
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Figure 5: Color mapping: (a) Reference image taken
outside the water surface. (b) Input image taken
underwater. (c) Result of color mapping applied to
(b).

presence of shining surface in the observed image. Hence,
the input hazy image is first subjected to local minima op-
eration in local patches and the background light is defined
as the maximum intensity among all the local minima.

Aλ = max
x∈I

min
y∈Ω(x)

Iλ(y) (9)

Given the background light and Nrer(R), the object to cam-
era distance d(x) can be calculated using Eq. (8). The de-
hazed image Jλ(x) can then be estimated using Eq. (4). Fig.
4 shows an example of dehazing. The recovered depthmap
and the haze removed image are shown respectively in Figs.
4(b) and (c).

3.2 Color mapping
The goal of color mapping is to map colors from a source

to a target image. A scene imaged under different situations
will show color variations depending upon the surrounding
illumination as well as the characteristics of the imaging de-
vice used. A mapping function f can be found in such situa-
tions that maps the colors from a standard color chart (taken
with a camera under some illuminant) to the required ref-
erence colors (as seen from a particular camera under some
particular illuminant). But these functions are specific to
the illuminants and cameras. It has to be relearned when-
ever the camera or illuminant changes.

Here we employ color mapping to map from a dehazed
image in underwater to that of its equivalent taken outside
the water surface. This mapping is specific for an object to
water surface distance D. We learn this mapping for a color
chart pair taken inside and outside the water surface.

The mapping can be written as a transform T which when
applied on the RGB value from input will give the corre-
sponding RGB value of the reference image. For a linear
mapping, the dimension of T turns out to be 3 × 3. In-
stead, we consider a polynomial model of degree n where
n ≤ 10. Hence, our transform matrix is a 3×n matrix. This
transform is learned using M corresponding pixels from the
color charts taken under the two conditions described earlier.
The higher order terms considered are [r, g, b, rg, rb, gb, r2, g2

b2, rgb]T . Let the reference image’s pixel intensity be col-

Figure 6: Change in observed colors with distance
from water surface.

lected in a matrix R3×M and its corresponding intensity
with its higher orders from the source image be collected in
matrix Sn×M . The mapping can then be written as

R3×M = T3×nSn×M (10)

There are 3n unknowns to be solved. Hence, we need at
least M = 3n unique correspondences. Since we have color
charts imaged under both conditions, we pick M >> 3n cor-
respondences and solve an over determined system of equa-
tions. Eq. (10) can be rewritten in the form of y = Ax as
shown in Eq. (11) and solved using least squares method as
x = (ATA)−1AT y.

r1 g1 .. b21 r1g1b1 01×n 01×n
01×n r1 g1 .. b21 r1g1b1 01×n
01×n 01×n r1 g1 .. b21 r1g1b1
.. .. .. .. .. .. ..


3M×3n

∗



T11

T12

..
T1n

..

..
T31

..
T3n


3n×1

=



R1

G1

B1

..

..
RM
GM
BM


3M×1

(11)

Fig. 5 our result for color mapping. Figs. 5(a) and (b) are
the two corresponding images taken outside and inside water
surface, respectively. The mapping is learned between these
two images and is used to map the colors from an underwater
image to that of the reference image outside water. The
obtained result after color mapping is shown in Fig. 5(c).
The mapped colors closely resemble their equivalent taken
outside the water surface (Fig. 5(a)).

3.2.1 White Balancing
White balancing is used to remove unrealistic color casts

from the captured images. It works with the assumption
that there is at least one white point in the captured im-
age. There are different methods of white balancing such as
gray world, shades of gray, white patch algorithm etc. We
used the gray world algorithm which assumes that average
reflectance of a scene is gray. It works by equalizing the
means of all the color channels. It keeps the green channel
as reference and multiplies the means of other channels with
a gain factor such that all the means become equal. Let
Rm,Gm and Bm be the means of the three color channels.
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Image 2

Image 3
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Figure 7: Quantitative results for color charts at
same reference depth but different object to camera
distances. All of these images are captured in clear
water without turbidity. The reference image taken
outside water is given in Fig 5(a). (a) Input image.
(b) Our result. (c) Result obtained by directly white
balancing (DWB) the input.

Then the white balanced image is given by

Rw(x, y) =
Gm
Rm

R(x, y)

Gw(x, y) = G(x, y)

Bw(x, y) =
Gm
Bm

B(x, y)

(12)

We apply white balancing post color mapping to remove any
unwanted color casts that can result due to mapping errors.

Table 1: Quantitative analysis (PSNR in dB).
Image Input Our result DWB

1 16.03 23.68 18.9
2 16.1 20.01 17.8
3 15.47 19.1 16.4

3.3 Color Modulation
The discussions till now tacitly assumed the distance from

water surface to the object to be constant. Let this distance
be the reference depth D0. This is the depth for which the
color mapping was learned between the color charts. (This
mapping is fixed and is used on all the examples in the pa-
per.) When the water column depth changes, this mapping
no longer holds. With increase or decrease in the depth,
the attenuation encountered by the light beam changes and
the observed colors will change. The effect of change in D
on the observed colors can be seen from Fig. 6. As depth
increases, the light rays get attenuated and only the wave-
length corresponding to blue dominates.

Since the learning was done for reference depth D0, an
image obtained at any other depth level (say D1) is first
dehazed to obtain the scene radiance J . The scene radiance
is dependent on the scene depth as can be seen from Eq.

(a)

(b)

(c)

Figure 8: Experiments on images taken at same ref-
erence depth and with little turbidity. (a) Input
images. (b) Color corrected result. (c) Final result
after white balancing (b).

Input Our Result

Figure 9: Experiments on images taken at same ref-
erence depth but with higher turbidity.
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Figure 10: Input from different depth D. (a) Input. (b) Color modulated image. (c) Output of color mapping.
(d) The bluish tint in (c) is removed by white balancing. (e) Result obtained by directly white balancing the
input in (a). (f) Result obtained by histogram equalization of the input in (a).

(4). Hence the radiance image is first color-modulated to
the reference depth prior to applying the color mapping.
Let the observed scene radiance at D0 be J0 and at depth
D1 be J1. Suppose D1 > D0. Then the modulation is done
as follows

J0λ = EAλNrer(λ)D0ρx

J1λ = EAλNrer(λ)D1ρx
(13)

We need to boost J1 to J0 and it is given as

J0λ = J1λNrer(λ)D0−D1 (14)

Since the decay coefficients are < 1 and the power term is
negative, this boosts up each channel strength towards the
reference frame.

4. EXPERIMENTAL RESULTS
The performance of our learning based color correction

scheme is evaluated both quantitatively and qualitatively
using images captured under different depths and object to
camera distances. The experiments are mainly performed
in an aquarium and in an indoor tank. Some results are
also shown on images taken from [6]. The aquarium is of
size 120 cm × 60 cm × 50 cm so we could get a maximum
reference depth D0 of 50 cm. The indoor tank has a depth
of 7 meters.

4.1 Quantitative Analysis
A quantitative analysis of the proposed algorithm is made

by color correcting the captured images of color charts at dif-
ferent object to camera distances. The input images of Fig.
7 are taken at an object to camera distance of 35, 55 and
81 cm, respectively. These inputs are subjected to dehaz-
ing, color mapping and white balancing to obtain the color
corrected results in Fig. 7(b). The result of directly white

balancing (DWB) the input is also shown for each of these
inputs in Fig. 7(c). The results obtained are then compared
with the reference color chart taken outside the water sur-
face (Fig. 5(a)). Quantitative measure based on PSNR is
provided in Table 1. It is quite evident from Fig. 7 and the
quantitative evaluation in Table 1 that the color restoration
efficiency of our method is far better as compared to just
white balancing. As the object to camera distance is in-
creased, light rays reflecting from the object undergo more
attenuation. The colors with red tint get attenuated more
and some of the colors having red in them are indistinguish-
able as can be seen from the input in the bottom row of
Fig. 7. But these colors are correctly recovered and are
distinguishable in our results ( Fig. 7(b)).

4.2 Real Experiments
We begin with experiments on images captured in mild

turbidity. These images were captured at the same reference
depth for which the mapping was learned for. Even though
the effect of haze due to turbidity is less for these images,
the effect of scattering cannot be neglected in underwater
imaging. Hence, we dehaze these inputs as well. Fig. 8
shows the result obtained by our method on two sets of
images taken under the same acquisition conditions. The
color cast in the input is due to light attenuation. The color
corrected final result after white balancing the color mapped
images are shown in the last row. The final result (Fig.
8(c)) is well-enhanced in colors and the color cast is almost
completely removed by our method.

We also verified the performance of our scheme in a more
turbid scenario. It is common to emulate turbidity by adding
a suitable quantity of milk. Fig. 9 shows the results of our
method for such a scenario. The acquired images had color
distortions as well as hazy appearance. Since the images
captured were from the same reference depth, no color mod-



(a) (b) (c)

Figure 11: Additional results: (a) Input underwater
images. (b) Result obtained by our method. (c)
Result obtained by DWB.

ulation was done. The input was dehazed followed by color
mapping and white balancing. The final result is provided
in Fig. 9 along with the hazy input. The output has its
colors and contrast recovered properly. The light red, pink
and orange colors in the inputs were more or less similar in
appearance but these are restored correctly by our method.

To show the efficacy of color modulation, we conducted
our next experiment on images taken at a different depth
from the reference. The input image in Fig. 10 is captured
in a large water tank. Hence, the depth of these scenes is
greater than the reference depth (D > D0). The depth of
the object from the water surface is 7 meter while the ref-
erence depth is only around 50 cm. Hence, prior to color
mapping, color modulation is performed to boost the chan-
nel strength to that of the reference. The result of each step
for the complete pipeline is shown in Fig. 10. The input is
first dehazed and color boosted, and the result is shown in
Fig. 10(b). This image is then subjected to color mapping.
The color mapped image (Fig. 10(c)) had a color cast which
is corrected by the white balancing step. The final result
of our method is provided in Fig. 10(d). For purpose of
comparison, the result of directly white balancing the input
image is shown in Fig. 10(e). This result is not satisfac-
tory as the colors are not properly mapped and have low
contrast. The histogram equalized result is provided in Fig.
10(f) which is also not acceptable. It can be observed here
that the contrast has increased significantly but the restored
image has unnatural colors. Compared to these two meth-
ods, the colors are significantly better restored in our result.
Please refer to the inset image shown in Fig. 10(d) which
is captured outside the water surface to visually verify the
restored colors.

Three more sets of additional results are provided in Fig.
11 to show the importance of our color modulation scheme.
These are scuba diving images. The input images are first
dehazed and then color modulated using the prior informa-
tion that these were captured at a depth of about 8 meters
from the water surface. The final results obtained for these
input images are shown in Fig. 11(b). For comparison,

we also provide the result of DWB in Fig. 11(c). White
balancing the input as such removes the color cast but the
recovered images have less contrast and the colors are not
restored properly; whereas our method removes the color
cast and restores the colors as well.

Comparisons with other correcting methods are shown in
Fig. 12. The comparison results shown in Figs. 12 (b),(c)
and (e) are based on chromatic dehazing, histogram equal-
ization and wavelength compensation (WCID) methods, re-
spectively, and are taken from [6]. The result of directly
white balancing the input and the result of our mapping
based color restoration method are shown in Figs. 12(d)
and (f). It can be noticed here that our method performs on
par with the state-of-art method in [6] (Fig. 12(e)), while
computationally being more efficient. The method in [6]
is basically a step-by-step inversion of the image formation
model to retrieve the radiance, whereas our aim is to pro-
duce an equivalent of the underwater image as seen from
outside the water surface which we achieve through dehaz-
ing, color modulation and color mapping. Additional results
and comparisons are provided in supplementary material.

5. CONCLUSIONS
We proposed here a scheme for color restoration of under-

water images taken in turbid medium. Turbidity leads to
haziness in the captured images along with color loss. We
employed the idea of color mapping and mapped the colors
of an underwater image to its equivalent as seen from out-
side the water surface. The mapping is learned only once
for a particular reference depth. We also proposed a color
modulation module to enable the same mapping to be ap-
plicable at different depths. We also accounted for haze by
using the dark channel prior. Both quantitative as well as
qualitative results were provided on many examples.
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